Skip to main content
Log in

Modularity and value distribution of quantum invariants of hyperbolic knots

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We obtain an exact modularity relation for the q-Pochhammer symbol. Using this formula, we show that Zagier’s modularity conjecture for a knot K essentially reduces to the arithmeticity conjecture for K. In particular, we show that Zagier’s conjecture holds for hyperbolic knots \(K\ne 7_2\) with at most seven crossings. For \(K=4_1\), we also prove a complementary reciprocity formula which allows us to prove a law of large numbers for the values of the colored Jones polynomials at roots of unity. We conjecture a similar formula holds for all knots and we show that this is the case if one assumes a suitable version of Zagier’s conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Notice that the series is in fact a finite sum at roots of unities.

  2. In what follows, a matrix in \(\text {SL}(2, {\mathbb {R}})\) acts on \({\mathbb {C}}\) by homography.

  3. This continuity property at rationals follows from the modularity conjecture but only when approaching a rational \(h/k=[0;b_1,\dots ,b_r]\) with fractions essentially of the form \([0;b_1,\dots ,b_r,N]\) with \(N\rightarrow \infty \); and not, for example, with \([0;b_1,\dots ,b_r,N_1,N_2]\) with both \(N_1,N_2\in {\mathbb {N}}\) going to infinity.

References

  1. Abel, N.H.: Œuvres complètes. Tome I. Éditions Jacques Gabay, Sceaux, 1992. Edited and with a preface by L. Sylow and S. Lie, Reprint of the second (1881) edition

  2. Andersen, J.E., Hansen, S.K.: Asymptotics of the quantum invariants for surgeries on the figure 8 knot. J. Knot Theory Ramif. 15(4), 479–548 (2006)

    Article  MathSciNet  Google Scholar 

  3. Báez-Duarte, L.: A strengthening of the Nyman–Beurling criterion for the Riemann hypothesis. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 14(1), 5–11 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Báez-Duarte, L., Balazard, M., Landreau, B., Saias, É.: Étude de l’autocorrélation multiplicative de la fonction ‘partie fractionnaire’. Ramanujan J. 9(1—-2), 215–240 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bagchi, B.: On Nyman, Beurling and Baez–Duarte’s Hilbert space reformulation of the Riemann hypothesis. Proc. Indian Acad. Sci. Math. Sci. 116(2), 137–146 (2006)

    Article  MathSciNet  Google Scholar 

  6. Baladi, V., Vallée, B.: Euclidean algorithms are Gaussian. J. Number Theory 110(2), 331–386 (2005)

    Article  MathSciNet  Google Scholar 

  7. Berndt, B.C.: What is a \(q\)-series? In: Ramanujan rediscovered, Ramanujan Mathematical Society of Lecture Notes Series, vol.14 , pp. 31–51. Ramanujan Mathematical Society, Mysore (2010)

  8. Bettin, S.: On the distribution of a cotangent sum. Int. Math. Res. Not. IMRN 21, 11419–11432 (2015)

    Article  MathSciNet  Google Scholar 

  9. Bettin, S., Conrey, J.B.: A reciprocity formula for a cotangent sum. Int. Math. Res. Not. IMRN 24, 5709–5726 (2013)

    Article  MathSciNet  Google Scholar 

  10. Bettin, S., Drappeau, S.: Limit laws for rational continued fractions and value distribution of quantum modular forms. Preprint arXiv:1903.00457v1

  11. Bettin, S., Drappeau, S.: Partial sums of the cotangent function. J. Théor. Nombres Bordeaux 32(1), 217–230 (2020)

    Article  MathSciNet  Google Scholar 

  12. Calegari, F., Garoufalidis, S., Zagier, D.: Bloch groups, algebraic K-theory, units, and Nahm’s conjecture. Ann. Sci. Ec. Normal. Sup. (to appear)

  13. Callahan, P.J., Dean, J.C., Weeks, J.R.: The simplest hyperbolic knots. J. Knot Theory Ramif. 8(3), 279–297 (1999)

    Article  MathSciNet  Google Scholar 

  14. Champanerkar, A., Dasbach, O., Kalfagianni, E., Kofman, I., Neumann, W., Stoltzfus, N. (eds.): Interactions Between Hyperbolic Geometry, Quantum Topology and Number Theory. Contemporary Mathematics, vol. 541. American Mathematical Society, Providence, RI (2011)

  15. Dimofte, T., Garoufalidis, S.: Quantum modularity and complex Chern–Simons theory. Commun. Number Theory Phys. 12(1), 1–52 (2018)

    Article  MathSciNet  Google Scholar 

  16. Dimofte, T., Gukov, S., Lenells, J., Zagier, D.: Exact results for perturbative Chern–Simons theory with complex gauge group. Commun. Number Theory Phys. 3(2), 363–443 (2009)

    Article  MathSciNet  Google Scholar 

  17. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  18. Garoufalidis, S.: Chern–Simons theory, analytic continuation and arithmetic. Acta Math. Vietnam. 33(3), 335–362 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Garoufalidis, S.: Quantum knot invariants. Res. Math. Sci., 5(1):Paper No. 11, 17 (2018)

  20. Garoufalidis, S., Zagier, D.: Quantum modularity of the Kashaev invariant. In preparation

  21. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7h edn. Elsevier/Academic Press, Amsterdam (2007).. ((translated from the Russian))

    MATH  Google Scholar 

  22. Gukov, S.: Three-dimensional quantum gravity, Chern–Simons theory, and the A-polynomial. Commun. Math. Phys. 255(3), 577–627 (2005)

    Article  MathSciNet  Google Scholar 

  23. Iwaniec, H.: Topics in Classical Automorphic Forms. Graduate Studies in Mathematics, vol. 17. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  24. Jones, V.F.R.: Hecke algebra representations of braid groups and link polynomials. Ann. Math. (2) 126(2), 335–388 (1987)

    Article  MathSciNet  Google Scholar 

  25. Kashaev, R.M.: A link invariant from quantum dilogarithm. Mod. Phys. Lett. A 10(19), 1409–1418 (1995)

    Article  MathSciNet  Google Scholar 

  26. Kashaev, R.M.: The hyperbolic volume of knots from the quantum dilogarithm. Lett. Math. Phys. 39(3), 269–275 (1997)

    Article  MathSciNet  Google Scholar 

  27. Kashaev, R.M., Tirkkonen, O.: Proof of the volume conjecture for torus knots. J. Math. Sci. 115(1), 2033–2036 (2003)

    Article  MathSciNet  Google Scholar 

  28. Khintchine, A.: Metrische Kettenbruchprobleme. Compos. Math. 1, 361–386 (1935)

    MathSciNet  MATH  Google Scholar 

  29. Maclachlan, C., Reid, A.W.: The Arithmetic of Hyperbolic 3-Manifolds, Graduate Texts in Mathematics, vol. 219. Springer, New York (2003)

    Book  Google Scholar 

  30. Murakami, H.: An introduction to the volume conjecture. In: Interactions Between Hyperbolic Geometry, Quantum Topology and Number Theory, Contemporary of Mathematics, vol. 541, pp. 1–40. American Mathematica; Society, Providence (2011)

  31. Murakami, H., Murakami, J.: The colored Jones polynomials and the simplicial volume of a knot. Acta Math. 186(1), 85–104 (2001)

    Article  MathSciNet  Google Scholar 

  32. Murakami, H., Murakami, J., Okamoto, M., Takata, T., Yokota, Y.: Kashaev’s conjecture and the Chern–Simons invariants of knots and links. Exp. Math. 11(3), 427–435 (2002)

    Article  MathSciNet  Google Scholar 

  33. Murakami, H., Yokota, Y.: Volume Conjecture for Knots. Springer, Singapore (2018)

    Book  Google Scholar 

  34. Murakami, J.: Generalized Kashaev invariants for knots in three manifolds. Quantum Topol. 8(1), 35–73 (2017)

    Article  MathSciNet  Google Scholar 

  35. Ohtsuki, T.: On the asymptotic expansion of the Kashaev invariant of the \(5_2\) knot. Quantum Topol. 7(4), 669–735 (2016)

    Article  MathSciNet  Google Scholar 

  36. Ohtsuki, T.: On the asymptotic expansions of the Kashaev invariant of hyperbolic knots with seven crossings. Int. J. Math. 28(13):1750096, 143 (2017)

  37. Ohtsuki, T., Yokota, Y.: On the asymptotic expansions of the Kashaev invariant of the knots with 6 crossings. Math. Proc. Cambr. Philos. Soc. 165(2), 287–339 (2018)

    Article  MathSciNet  Google Scholar 

  38. Ohtsuki, Tomotada, Takata, Toshie: On the Kashaev invariant and the twisted Reidemeister torsion of two-bridge knots. Geom. Topol. 19(2), 853–952 (2015)

    Article  MathSciNet  Google Scholar 

  39. Olver, F.W.J.: Asymptotics and special functions. AKP Classics. A K Peters, Ltd., Wellesley, MA, 1997. Reprint of the 1974 original [Academic Press, New York; MR0435697 (55 #8655)]

  40. Plana, G.: Sur une nouvelle expression analytique des nombre Bernoulliens. Memorie della Reale accademia delle scienze di Torino 25, 403–418 (1820)

    Google Scholar 

  41. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Stochastic Modeling. Chapman & Hall, New York (1994).. ((stochastic models with infinite variance))

    MATH  Google Scholar 

  42. Tenenbaum, G.: Introduction to Analytic and Probabilistic Number Theory Graduate Studies in Mathematics, vol. 163, 3rd edn. American Mathematical Society, Providence (2015)

    Book  Google Scholar 

  43. Vasyunin, V.I.: On a biorthogonal system associated with the Riemann hypothesis. Algebra i Analiz 7(3), 118–135 (1995)

    MathSciNet  MATH  Google Scholar 

  44. Witten, E.: Quantum field theory and the Jones polynomial. In: Braid Group, Knot Theory and Statistical Mechanics, II, Advanced Series in Mathematical Physics, vol. 17, pp.361–451. World Sci. Publ., River Edge (994)

  45. Yokota, Y.: From the Jones polynomial to the \(A\)-polynomial of hyperbolic knots. In: Proceedings of the Winter Workshop of Topology/Workshop of Topology and Computer (Sendai, 2002/Nara, 2001), vol. 9, pp. 11–21 (2003)

  46. Yokota, Y.: On the complex volume of hyperbolic knots. J. Knot Theory Ramif. 20(7), 955–976 (2011)

    Article  MathSciNet  Google Scholar 

  47. Zagier, D.: Quantum modular forms. In: Quanta of Maths, Clay Mathematical Proceedings, vol. 11, pp. 659–675. American Mathematical Society, Providence (2010)

Download references

Acknowledgements

This paper was partially written during a visit of of S. Bettin at the Aix-Marseille University, a visit of S. Drappeau at the University of Genova, and a visit of both authors at ICTP Trieste. The authors thank these Institution for the hospitality and Aix-Marseille University, INdAM and ICTP for the financial support for these visits. The authors wish to thank Don Zagier for useful discussions, Brian Conrey for putting us in contact with him, and Hitoshi Murakami for many helpful comments on this work.

S. Bettin is member of the INdAM group GNAMPA and his work is partially supported by PRIN 2017 “Geometric, algebraic and analytic methods in arithmetic”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bettin.

Additional information

Communicated by Kannan Soundararajan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bettin, S., Drappeau, S. Modularity and value distribution of quantum invariants of hyperbolic knots. Math. Ann. 382, 1631–1679 (2022). https://doi.org/10.1007/s00208-021-02288-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02288-2

Mathematics Subject Classification

Navigation