Alexeev, V., Hacon, C., Kawamata, Y.: Termination of (many) 4-dimensional log flips. Invent. Math. 168(2), 433–448 (2007)
MathSciNet
Article
Google Scholar
Ambro, F.: Shokurov’s boundary property. J. Differ. Geom. 67(2), 229–255 (2004)
MathSciNet
Article
Google Scholar
Artin, M.: Some numerical criteria for contractability of curves on algebraic surfaces. Am. J. Math. 84, 485–496 (1962)
MathSciNet
Article
Google Scholar
Bauer, T., Campana, F., Eckl, T., Kebekus, S., Peternell, T., Rams, S., Szemberg, T., Wotzlaw, L.: A Reduction Map for nef Line Bundles, Complex Geometry (Göttingen, 2000). Springer, Berlin, pp. 27–36 (2002)
Birkar, C., Cascini, P., Hacon, C., McKernan, J.: Existence of minimal models for varieties of log general type. J. Am. Math. Soc. 23(2), 405–468 (2010)
MathSciNet
Article
Google Scholar
Birkar, C.: Existence of flips and minimal models for 3-folds in char \(p\). Ann. Sci. Éc. Norm. Supér. (4) 49(1), 169–212 (2016)
MathSciNet
Article
Google Scholar
Birkar, C., Waldron, J.: Existence of Mori fibre spaces for 3-folds in \({\rm char}\, p\). Adv. Math. 313, 62–101 (2017)
MathSciNet
Article
Google Scholar
Cascini, P., Tanaka, H.: Purely log terminal threefolds with non-normal centres in characteristic two. arXiv:1607.08590 (2016)
Cascini, P., Tanaka, H., Xu, C.: On base point freeness in positive characteristic. Ann. Sci. Ecole Norm. Sup. 48(5), 1239–1272 (2015)
MathSciNet
Article
Google Scholar
Chen, Y., Zhang, L.: The subadditivity of the Kodaira dimension for fibrations of relative dimension one in positive characteristics. Math. Res. Lett. 22(3), 675–696 (2015)
MathSciNet
Article
Google Scholar
Das, O., Hacon, C.D.: On the adjunction formula for 3-folds in characteristic \(p>5\). Math. Z. 284(1–2), 255–269 (2016)
MathSciNet
Article
Google Scholar
Das, O., Schwede, K.: The F-different and a canonical bundle formula. arXiv:1508.07295 (2015)
Das, O., Waldron, J.: On the abundance problem for 3-folds in characteristic \(p>5\), with an appendix by C. Hacon. arXiv:1610.03403 (2016)
Ejiri, S.: Positivity of anti-canonical divisors and F-purity of fibers. arXiv:1604.02022 (2016)
Ekedahl, T.: Canonical models of surfaces of general type in positive characteristic. Inst. Hautes Études Sci. Publ. Math. 67, 97–144 (1988)
Fujita, T.: Zariski decomposition and canonical rings of elliptic threefolds. J. Math. Soc. Jpn. 38, 19–37 (1986)
MathSciNet
Article
Google Scholar
Gongyo, Y., Nakamura, Y., Tanaka, H.: Rational points on log Fano threefolds over a finite field. J. Eur. Math. Soc. (2016) (to appear)
Hacon, C., Witaszek, J.: On the relative minimal model program for fourfolds in positive characteristic (2020)
Hacon, C., Xu, C.: On the three dimensional minimal model program in positive characteristic. J. Am. Math. Soc. 28(3), 711–744 (2015)
MathSciNet
Article
Google Scholar
Hartshorne, R.: Algebraic Geometry. Springer, New York (1977)
Book
Google Scholar
Hashizume, K., Nakamura, Y., Tanaka, H.: Minimal model program for log canonical threefolds in positive characteristic. Math. Res. Lett. 27(4), 1003–1054 (2020)
MathSciNet
Article
Google Scholar
Keel, S.: Basepoint freeness for nef and big line bundles in positive characteristic. Ann. Math. (2) 149(1), 253–286 (1999)
MathSciNet
Article
Google Scholar
Keel, S., Matsuki, K., McKernan, J.: Log abundance theorem for threefolds. Duke Math. J. 75(1), 99–119 (1994)
MathSciNet
Article
Google Scholar
Kollár, J., et al.: Flips and Abundance for Algebraic Threefolds. Société Mathématique de France, Paris (1992)
MATH
Google Scholar
Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998)
Book
Google Scholar
Kollár, J.: Extremal rays on smooth threefolds. Ann. Sci. École Norm. Sup. (4) 24(3), 339–361 (1991)
MathSciNet
Article
Google Scholar
Kollár, J.: Rational Curves on Algebraic Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 32. Springer, Berlin (1996)
Book
Google Scholar
Kollár, J.: Quotient spaces modulo algebraic groups. Ann. Math. (2) 145(1), 33–79 (1997)
MathSciNet
Article
Google Scholar
Kollár, J.: Singularities of the Minimal Model Program, Cambridge Tracts in Mathematics, vol. 200. Cambridge University Press, Cambridge (2013)
Book
Google Scholar
Lazarsfeld, R.: Positivity in Algebraic Geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 48. Springer, Berlin (2004)
Liedtke, C.: Algebraic surfaces in positive characteristic. In: Birational geometry, rational curves, and arithmetic, Simons Symp., pp. 229–292. Springer, Cham (2013)
Martinelli, D., Nakamura, Y., Witaszek, J.: On the basepoint-free theorem for log canonical threefolds over the algebraic closure of a finite field. Algebra Number Theory 9(3), 725–747 (2015)
MathSciNet
Article
Google Scholar
Masek, V.: Kodaira–Iitaka and numerical dimensions of algebraic surfaces over the algebraic closure of a finite field. Rev. Roumaine Math. Pures Appl. 38(7–8), 679–685 (1993)
MathSciNet
MATH
Google Scholar
Nakamura, Y., Witaszek, J.: On the base point free theorem and Mori dream spaces for log canonical threefolds over the algebraic closure of a finite field. Math. Z. 287(3–4), 1343–1353 (2017)
MathSciNet
Article
Google Scholar
Patakfalvi, Z.: Semi-positivity in positive characteristics. Ann. Sci. Éc. Norm. Supér. (4) 47(5), 991–1025 (2014)
Prokhorov, Y., Shokurov, V.: Towards the second main theorem on complements. J. Algebr. Geom. 18(1), 151–199 (2009)
MathSciNet
Article
Google Scholar
Raynaud, M., Gruson, L.: Critères de platitude et de projectivité. Techniques de “platification” d’un module. Invent. Math. 13, 1–89 (1971)
MathSciNet
Article
Google Scholar
Reid, M.: Nonnormal del Pezzo surfaces. Publ. Res. Inst. Math. Sci. 30(5), 695–727 (1994)
MathSciNet
Article
Google Scholar
Serre, J.-P.: Sur la topologie des variétés algébriques en caractéristique \(p\), pp. 24–53. Universidad Nacional Autónoma de México and UNESCO, Mexico City, Symposium internacional de topología algebraica International symposium on algebraic topology (1958)
Tanaka, H.: Minimal models and abundance for positive characteristic log surfaces. Nagoya Math. J. 216, 1–70 (2014)
MathSciNet
Article
Google Scholar
Tanaka, H.: Behavior of canonical divisors under purely inseparable base changes. arXiv:1502.01381v4 (2015)
Tanaka, H.: Abundance theorem for surfaces over imperfect fields. arXiv:1502.01383 (2016)
Tanaka, H.: Pathologies on Mori fibre spaces in positive characteristic. arXiv:1609.00574 (2016)
Tanaka, H.: Semiample perturbations for log canonical varieties over an \(F\)-finite field containing an infinite perfect field. Int. J. Math. 28(5), 1750030, 13 (2017)
MathSciNet
Article
Google Scholar
The Stacks Project Authors, Stacks Project. http://stacks.math.columbia.edu (2014)
Totaro, B.: Moving codimension-one subvarieties over finite fields. Am. J. Math. 131(6), 1815–1833 (2009)
MathSciNet
Article
Google Scholar
Waldron, J.: Finite generation of the log canonical ring for 3-folds in char \(p\). Math. Res. Lett. 24(3), 933–946 (2017)
MathSciNet
Article
Google Scholar
Waldron, J.: The LMMP for log canonical 3-folds in characteristic \(p>5\). Nagoya Math. J. 230, 48–71 (2018)
Xu, C., Zhang, L.: Nonvanishing for threefolds in characteristic \(p>5\). arXiv:1801.03192v2 (2018)
Zhang, L.: Abundance for 3-folds with non-trivial Albanese maps in positive characteristic. arXiv:1705.00847 (2017)