An improved result for Falconer’s distance set problem in even dimensions

Abstract

We show that if compact set \(E\subset \mathbb {R}^d\) has Hausdorff dimension larger than \(\frac{d}{2}+\frac{1}{4}\), where \(d\ge 4\) is an even integer, then the distance set of E has positive Lebesgue measure. This improves the previously best known result towards Falconer’s distance set conjecture in even dimensions.

This is a preview of subscription content, access via your institution.

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study

References

  1. 1.

    Bourgain, J.: Hausdorff dimension and distance sets. Israel J. Math. 87(1–3), 193–201 (1994)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bourgain, J., Demeter, C.: The proof of the \(l^2\) decoupling conjecture. Ann. Math. (2) 182(1), 351–389 (2015)

  3. 3.

    Du, X.: Upper bounds for Fourier decay rates of fractal measures. arXiv:1908.05753

  4. 4.

    Du, X., Guth, L., Ou, Y., Wang, H., Wilson, B., Zhang, R.: Weighted restriction estimates and application to Falconer distance set problem. Am. J. Math. (2018, to appear)

  5. 5.

    Du, X., Zhang, R.: Sharp \(L^2\) estimates of the Schrödinger maximal function in higher dimensions. Ann. Math. 189(3), 837–861 (2019)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Erdoğan, M.B.: A bilinear Fourier extension theorem and applications to the distance set problem. Int. Math. Res. Not. 23, 1411–1425 (2005)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Falconer, K.J.: On the Hausdorff dimensions of distance sets. Mathematika 32(2), 206–212 (1985)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Guth, L.: A restriction estimate using polynomial partitioning. J. Am. Math. Soc. 29(2), 371–413 (2016)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Guth, L.: Restriction estimates using polynomial partitioning II. Acta Math. 221(1), 81–142 (2018)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Guth, L., Iosevich, A., Ou, Y., Wang, H.: On Falconer’s distance set problem in the plane. Invent. math. (2019). https://doi.org/10.1007/s00222-019-00917-x

    Article  MATH  Google Scholar 

  11. 11.

    Guth, L., Katz, N.H.: On the Erdős distinct distance problem in the plane. Ann. Math. (2) 181(1), 155–190 (2015)

  12. 12.

    Herz, C.S.: Fourier transforms related to convex sets. Ann. Math. (2) 75(1), 81–92 (1962)

  13. 13.

    Hofmann, S., Iosevich, A.: Circular averages and Falconer/Erdös distance conjecture in the plane for random metrics. Proc. Am. Mat. Soc. 133, 133–144 (2005)

  14. 14.

    Iosevich, A., Łaba, I.: K-distance sets, Falconer conjecture, and discrete analogs. Integers Electron. J. Combin. Number Theory 5 (2005). #A08 (hardcopy. In: Topics in Combinatorial Number Theory: Proceedings of the Integers Conference: in Honor of Tom Brown, p. 261. ITI Series, vol, DIMATIA (2003)

  15. 15.

    Iosevich, A., Rudnev, M., Uriarte-Tuero, I.: Theory of dimension for large discrete sets and applications. Math. Model. Nat. Phenom. 9(5), 148–169 (2014)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Kaufman, R., Mattila, P.: Hausdorff dimension and exceptional sets of linear transformations. Ann. Acad. Sci. Fennicae 1, 387–392 (1975)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Liu, B.: An \(L^2\)-identity and pinned distance problem, Geom. Funct. Anal. 29(1), 283–294

  18. 18.

    Mattila, P.: Spherical averages of Fourier transforms of measures with finite energy; dimensions of intersections and distance sets. Mathematika 34(2), 207–228 (1987)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Mattila, P.: Fourier analysis and Hausdorff dimension. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  20. 20.

    Orponen, T.: On the dimension and smoothness of radial projections. Anal. PDE 12(5), 1273–1294 (2019)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Solymosi, J., Vu, V.: Near optimal bounds for the Erdős distinct distances problem in high dimensions. Combinatorica 28(1), 113–125 (2008)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Wolff, T.: Decay of circular means of Fourier transforms of measures. Int. Math. Res. Not. 10, 547–567 (1999)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Wolff, T.: Lectures on Harmonic Analysis, University Lecture Series, vol. 29. American Mathematican Society, Providence (2003)

    Google Scholar 

Download references

Acknowledgements

XD is supported by NSF DMS-1856475. AI was partially supported by NSF HDR TRIPODS 1934985. YO is supported by NSF DMS-1854148. HW is funded by the S.S. Chern Foundation and NSF DMS-1638352. RZ is supported by NSF DMS-1856541. We would like to thank Pablo Shmerkin for pointing out a minor issue in a previous version regarding the pushforward measure under the orthogonal projection.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ruixiang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Loukas Grafakos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, X., Iosevich, A., Ou, Y. et al. An improved result for Falconer’s distance set problem in even dimensions. Math. Ann. (2021). https://doi.org/10.1007/s00208-021-02170-1

Download citation