Skip to main content
Log in

Bergman–Weil expansion for holomorphic functions

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Using a modified Cauchy–Weil representation formula in a Weil polyhedron \({\varvec{D}}_f\subset U\subset \mathbb {C}^n\), we prove a generalized version of Lagrange interpolation formula (at any order) with respect to a discrete set defined by \(V_{{\varvec{D}}_f}(f):=\{f_1=\cdots = f_m =0\}\, \cap {\varvec{D}}_f\), when \(m>n\) and \(\{f_1,\ldots ,f_m\}\) is minimal as a defining system. Thus the set \(V_{{\varvec{D}}_f}(f)\) fails to be a complete intersection. We present our result as an averaged version of the classic Lagrange interpolation formula in the case \(m=n\). We invoke to that purpose Crofton’s formula, which plays a key role in the construction of Vogel generalized cycles as proposed in Andersson et al. (J Reine Angew Math 728: 105–136, 2017; Math Ann, 2020. https://doi.org/10.1007/s00208-020-01973-y). This leads us naturally to the construction of Bochner–Martinelli kernels. We also introduce \(f^{-1}(\{0\})\)-Lagrange interpolators (at any order) subordinate to the choice of a smooth hermitian metric on the trivial m-bundle \(\mathbb {C}_U^m=U\times \mathbb {C}^m\), while the mapping \(f = (f_1,\ldots ,f_m)\) is considered as its section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The author confirms that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  1. Aizenberg, L.A., Yuzhakov, A.P.: Integral Representation and Residues in Multidimensional Complex Analysis. American Mathematical Society, Providence (1983)

    Book  Google Scholar 

  2. Andersson, M.: Residue currents and ideals of holomorphic functions. Bull. Sci. Math. 128(6), 481–512 (2004)

    Article  MathSciNet  Google Scholar 

  3. Andersson, M.: Explicit versions of the Briançon–Skoda theorem with variations. Mich. Math. J. 54(2), 361–372 (2006)

    Article  Google Scholar 

  4. Andersson, M., Berndtsson, B.: Henkin–Ramirez formulas with weight factors. Ann. Inst. Fourier (Grenoble) 32(3), v–vi, 91–110 (1982)

  5. Andersson, M., Samuelsson, H., Sznajdman, J.: On the Briançon–Skoda theorem on a singular variety. Ann. Inst. Fourier (Grenoble) 60(2), 417–432 (2010)

    Article  MathSciNet  Google Scholar 

  6. Andersson, M., Eriksson, D., Samuelsson Kalm, H., Wulcan, E., Yger, A.: Global representation of Segre numbers by Monge–Ampère products. Math. Ann. (2020). https://doi.org/10.1007/s00208-020-01973-y

    Article  MATH  Google Scholar 

  7. Andersson, M., Samuelsson-Kalm, H., Wulcan, E., Yger, A.: Segre numbers, a generalized King formula, and local intersections. J. Reine Angew. Math. 728, 105–136 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Andersson, M., Samuelsson-Kalm, H., Wulcan, E., Yger, A.: One parameter regularizations of products of residue currents. In: Andersson, M., Boman, J., Kiselman, C., Kurasov, P., Sigurdsson, R. (eds.) Analysis Meets Geometry: A Tribute to Mikael Passare. Trends in Mathematics, pp. 81–90. Springer, Berlin (2017)

    Chapter  Google Scholar 

  9. Andersson, M., Wulcan, E.: Residue currents with prescribed annihilator ideals. Ann. Sci. École Norm. Sup. 40, 985–1007 (2007)

    Article  MathSciNet  Google Scholar 

  10. Andersson, M., Wulcan, E.: Decomposition of residue currents. J. Reine Angew. Math. 638, 103–118 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Berenstein, C.A., Gay, R.: Complex Variables. An Introduction, GTM 125. Springer, Berlin (1991)

    MATH  Google Scholar 

  12. Berenstein, C.A., Gay, R., Vidras, A., Yger, A.: Residue Currents and Bézout Identities. Progress in Mathematics, vol. 114. Birkhäuser, Basel (1993)

    Book  Google Scholar 

  13. Bernstein, I.N.: The analytic continuation of generalized functions with respect to a parameter. Funct. Anal. Appl. 6, 273–285 (1972)

    Article  MathSciNet  Google Scholar 

  14. Björk, J.E., Samuelsson, H.: Regularizations of residue currents. J. Reine Angew. Math. 649, 33–54 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Briançon, J., Skoda, H.: Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de \(\mathbb{C }^n\). Comptes Rendus Acad. Sci. Paris Sér. A 278, 949–951 (1974)

    MathSciNet  MATH  Google Scholar 

  16. Demailly, J.P.: Complex analytic and differential geometry. http://www-fourier.ujf-grenoble.fr/demailly/manuscripts/agbook.pdf

  17. Eagon, J.A., Northcott, D.G.: Ideals defined by matrices and a certain complex associated with them. Proc. R. Soc. Ser. A 269, 188–204 (1962)

    MathSciNet  MATH  Google Scholar 

  18. Gleason, A.: The Cauchy–Weil theorem. J. Math. Mech. 12, 429–444 (1963)

    MathSciNet  MATH  Google Scholar 

  19. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley-Interscience, New York (1978)

    MATH  Google Scholar 

  20. Lärkäng, R.: A comparison formula for residue currents (2012). Göteborg. arXiv:1207.1279v3 [math.CV] (Preprint)

  21. Lärkäng, R., Wulcan, E.: Residue currents and fundamental cycles. Indiana Univ. Math. J. 67(3), 1085–1114 (2018)

    Article  MathSciNet  Google Scholar 

  22. Lipman, J.: Residues and Traces of Differential Forms via Hoschschild Homology, Contemporary Mathematics, vol. 61. American Mathematical Society, Providence (1987)

    Book  Google Scholar 

  23. Lipman, J., Teissier, B.: Pseudo-rational local rings and a theorem of Briançon–Skoda about integral closures of ideals. Mich. Math. J. 28, 97–116 (1981)

    MATH  Google Scholar 

  24. Lundqvist, J.: A local Grothendieck duality theorem for Cohen–Macaulay ideals. Math. Scand. 111(1), 42–52 (2012)

    Article  MathSciNet  Google Scholar 

  25. Tsikh, A.: Multidimensional residues and their applications. Transl. Am. Math. Soc. 103, 20 (1992)

    MathSciNet  Google Scholar 

  26. Vidras, A., Yger, A.: Coleff–Herrera currents revisited. In: Sabadini, I., Struppa, D.C. (eds.) The Mathematical Legacy of Leon Ehrenpreis, 1930–2010, pp. 327–351. Springer, Berlin (2011)

    Google Scholar 

  27. Weil, A.: L’intégrale de Cauchy et les fonctions de plusieurs variables. Math. Ann. 111, 178–182 (1935)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Yger.

Additional information

Communicated by Ngaiming Mok.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidras, A., Yger, A. Bergman–Weil expansion for holomorphic functions. Math. Ann. 382, 383–419 (2022). https://doi.org/10.1007/s00208-020-02137-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02137-8

Mathematics Subject Classification

Navigation