Skip to main content
Log in

Upper bounds of nodal sets for eigenfunctions of eigenvalue problems

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The aim of this article is to provide a simple and unified way to obtain the sharp upper bounds of nodal sets of eigenfunctions for different types of eigenvalue problems on real analytic domains. The examples include biharmonic Steklov eigenvalue problems, buckling eigenvalue problems and champed-plate eigenvalue problems. The geometric measure of nodal sets are derived from doubling inequalities and growth estimates for eigenfunctions. It is done through analytic estimates of Morrey–Nirenberg and Carleman estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    MathSciNet  MATH  Google Scholar 

  2. Alessandrini, G., Morassi, A., Rosset, E., Vessella, S.: On doubling inequalities for elliptic systems. J. Math. Anal. Appl. 357(2), 349–355 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Bakri, L., Casteras, J.B.: Quantitative uniqueness for Schrödinger operator with regular potentials. Math. Methods Appl. Sci. 37, 1992–2008 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Bellova, K., Lin, F.-H.: Nodal sets of Steklov eigenfunctions. Calc. Var. PDE 54, 2239–2268 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Brüning, J.: Über Knoten won Eigenfunktionen des Laplace–Beltrami-operators. Math. Z. 158, 15–21 (1978)

    MathSciNet  MATH  Google Scholar 

  6. Bruno, O., Galkowski, J.: Domains without dense Steklov nodal sets. J. Fourier Anal. Appl. 26(3), 29 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Chang, J.-E.: Lower bounds for nodal sets of biharmonic Steklov problems. J. Lond. Math. Soc. 95, 763–784 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Colding, T.H., Minicozzi II, W.P.: Lower bounds for nodal sets of eigenfunctions. Commun. Math. Phys. 306, 777–784 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Dong, R.-T.: Nodal sets of eigenfunctions on Riemann surfaces. J. Differ. Geom. 36, 493–506 (1992)

    MathSciNet  MATH  Google Scholar 

  10. Donnelly, H., Fefferman, C.: Nodal sets of eigenfunctions on Riemannian manifolds. Invent. Math. 93(1), 161–183 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Donnelly, H., Fefferman, C.: Nodal sets of eigenfunctions: Riemannian manifolds with boundary. In: Analysis, Et Cetera. Academic Press, Boston, pp. 251–262 (1990)

  12. Donnelly, H., Fefferman, C.: Nodal sets for eigenfunctions of the Laplacian on surfaces. J. Am. Math. Soc. 3(2), 333–353 (1990)

    MathSciNet  MATH  Google Scholar 

  13. Ferrero, A., Gazzola, F., Weth, T.: On a four other Steklov eigenvalue problem. Analysis 25, 315–332 (2005)

    MATH  Google Scholar 

  14. Galkowski, J., Toth, J.: Pointwise bounds for Steklov eigenfunctions. J. Geom. Anal. 29(1), 142–193 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Garofalo, N., Lin, F.-H.: Monotonicity properties of variational integrals, \(A_p\) weights and unique continuation. Indiana Univ. Math. 35, 245–268 (1986)

    MathSciNet  MATH  Google Scholar 

  16. Georgiev, B., Roy-Fortin, G.: Polynomial upper bound on interior Steklov nodal sets. J. Spectr. Theory 9(3), 897–919 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Han, Q., Lin, F.-H.: Nodal Sets of Solutions of Elliptic Differential Equations, book in preparation (online at http://www.nd.edu/qhan/nodal.pdf)

  18. Hardt, R., Simon, L.: Nodal sets for solutions of elliptic equations. J. Differ. Geom. 30, 505–522 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Hezari, H., Sogge, C.D.: A natural lower bound for the size of nodal sets. Anal. PDE 5(5), 1133–1137 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Hörmander, L.: Uniqueness theorems for second order elliptic differential equations. Commun. Partial Differ. Equ. 8, 21–64 (1983)

    MathSciNet  MATH  Google Scholar 

  21. Kukavica, I.: Nodal volumes for eigenfunctions of analytic regular elliptic problems. J. Anal. Math. 67, 269–280 (1995)

    MathSciNet  MATH  Google Scholar 

  22. Kuttler, J., Sigillito, V.: inequalities for memebrane and Stekloff eigenvalures. J. Math. Anal. Appl. 23, 148–160 (1968)

    MathSciNet  MATH  Google Scholar 

  23. Lin, F.-H.: Nodal sets of solutions of elliptic equations of elliptic and parabolic equations. Commun. Pure Appl. Math. 44, 287–308 (1991)

    MathSciNet  MATH  Google Scholar 

  24. Logunov, A.: Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure. Ann. Math. 187, 221–239 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Logunov, A.: Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture. Ann. Math. 187, 241–262 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Logunov, A., Malinnikova, E.: Nodal sets of Laplace eigenfunctions: estimates of the Hausdorff measure in dimension two and three, 50 years with Hardy spaces, pp. 333–344, Oper. Theory Adv. Appl., vol. 261. Birkhäuser/Springer, Cham (2018)

  27. Mangoubi, D.: A remark on recent lower bounds for nodal sets. Commun. Partial Differ. Equ. 36(12), 2208–2212 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Meleshko, V.: Selected topics in the theory of two-dimensional biharmonic problem. Appl. Mech. Rev. 56(1), 33–85 (2003)

    Google Scholar 

  29. Morrey, C.: Multiple Integrals in the Calculus of Variations, Reprint of the 1966 edition. Springer, Berlin, x+506 pp. (2008)

  30. Morrey, C.B., Nirenberg, L.: On the analyticity of the solutions of linear elliptic systems of partial differential equations. Commun. Pure Appl. Math. 10, 271–290 (1957)

    MathSciNet  MATH  Google Scholar 

  31. Payne, L.: some isoperimetric inequalities for harmonic functions. SIAM J. Math. Anal. 1, 354–359 (1970)

    MathSciNet  MATH  Google Scholar 

  32. Polterovich, I., Sher, D., Toth, J.: Nodal length of Steklov eigenfunctions on real-analytic Riemannian surfaces. J. Reine Angew. Math. 754, 17–47 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Sogge, C.D., Wang, X., Zhu, J.: Lower bounds for interior nodal sets of Steklov eigenfunctions. Proc. Am. Math. Soc. 144(11), 4715–4722 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Sogge, C.D., Zelditch, S.: Lower bounds on the Hausdorff measure of nodal sets. Math. Res. Lett. 18, 25–37 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Steinerberger, S.: Lower bounds on nodal sets of eigenfunctions via the heat flow. Commun. Partial Differ. Equ. 39(12), 2240–2261 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Toth, J., Zelditch, S.: Counting nodal lines which touch the boundary of an analytic domain. J. Differ. Geom. 81(3), 649–686 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Wang, X., Zhu, J.: A lower bound for the nodal sets of Steklov eigenfunctions. Math. Res. Lett. 22(4), 1243–1253 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Yau, S.T.: Problem Section, Seminar on Differential Geometry, Annals of Mathematical Studies, vol. 102, pp. 669–706. Princeton University Press, Princeton (1982)

    Google Scholar 

  39. Zelditch, S.: Complex zeros of real ergodic eigenfunctions. Invent. Math. 167(2), 419–449 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Zelditch, S.: Measure of nodal sets of analytic Steklov eigenfunctions. Math. Res. Lett. 22(6), 1821–1842 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Zhu, J.: Doubling property and vanishing order of Steklov eigenfunctions. Commun. Partial Differ. Equ. 40(8), 1498–1520 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Zhu, J.: Interior nodal sets of Steklov eigenfunctions on surfaces. Anal. PDE 9(4), 859–880 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Zhu, J.: Quantitative unique continuation of solutions to higher order elliptic equations with singular coefficients. Calc. Var. Partial Differ. Equ. 57(2), 35 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Zhu, J.: Doubling inequality and nodal sets for solutions of bi-Laplace equations. Arch. Ration. Mech. Anal. 232(3), 1543–1595 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Zhu, J.: Nodal sets of Robin and Neumann eigenfunctions, arXiv:1810.12974

  46. Zhu, J.: Geometry and interior nodal sets of Steklov eigenfunctions. Calc. Var. Partial Differ. Equ. 59(5), 150 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuyi Zhu.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lin is supported in part by NSF Grant DMS-1955249, Zhu is supported in part by NSF Grant OIA-1832961.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, F., Zhu, J. Upper bounds of nodal sets for eigenfunctions of eigenvalue problems. Math. Ann. 382, 1957–1984 (2022). https://doi.org/10.1007/s00208-020-02098-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02098-y

Mathematics Subject Classification

Navigation