Cdh descent, cdarc descent, and Milnor excision


We give necessary and sufficient conditions for a cdh sheaf to satisfy Milnor excision, following ideas of Bhatt and Mathew. Along the way, we show that the cdh \(\infty \)-topos of a quasi-compact quasi-separated scheme of finite valuative dimension is hypercomplete, extending a theorem of Voevodsky to nonnoetherian schemes. As an application, we show that if E is a motivic spectrum over a field k which is n-torsion for some n invertible in k, then the cohomology theory on k-schemes defined by E satisfies Milnor excision.

This is a preview of subscription content, access via your institution.


  1. 1.

    The condition (G1) (resp. (G2)) asks that the horizontal (resp. vertical) morphisms in the square of Theorem A be injective (resp. surjective).

  2. 2.

    By a cofiltered limit of schemes, we will always mean the limit of a cofiltered diagram of schemes with affine transition morphisms.

  3. 3.

    By a blowup we will always mean a blowup with finitely presented center, so that blowups are proper.

  4. 4.

    However, if X is integral, then V need not be locally integral (unless X is geometrically unibranch). This is the reason for considering quasi-integral schemes.

  5. 5.

    More precisely, Rydh defines universally subtrusive morphisms, which are not necessarily qcqs. A v cover is thus a qcqs universally subtrusive morphism.

  6. 6.

    This statement only requires \(\mathcal {C} \) to be generated under colimits by cotruncated objects.


  1. 1.

    Ananyevskiy, A., Druzhinin, A.: Rigidity for linear framed presheaves and generalized motivic cohomology theories. Adv. Math. 333, 423–462 (2018).

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Asok, A., Hoyois, M., Wendt, M.: Affine representability results in \({{\mathbb{A}}}^1\)-homotopy theory I: vector bundles . Duke Math. J. (2016). arXiv:1506.07093

  3. 3.

    Bachmann, T., Hoyois, M.: Norms in motivic homotopy theory (2018). arXiv:1711.03061

  4. 4.

    Bhatt, B., Mathew, A.: The arc topology. (2020). arXiv:1807.04725

  5. 5.

    Bourbaki, N.: Éléments de Mathématique, Algèbre Commutative, vol. 7. Springer, Berlin (1975)

    MATH  Google Scholar 

  6. 6.

    Bhatt, B., Scholze, P.: Projectivity of the Witt vector affine Grassmannian. Invent. Math. 209(2), 329–423 (2017).

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Cisinski, D.-C., Déglise, F.: Integral mixed motives in equal characteristic, Doc. Math., Extra Volume: Alexander S. Merkurjev’s Sixtieth Birthday pp. 145–194 (2015)

  8. 8.

    Clausen, D., Mathew, A.: Hyperdescent and étale K-theory. (2019). arXiv:1905.06611

  9. 9.

    Elmanto, E., Hoyois, M., Iwasa, R., Kelly, S.: Milnor excision for motivic spectra (in preparation) (2020)

  10. 10.

    Elmanto, E., Khan, A.A.: Perfection in motivic homotopy theory. Proc. Lond. Math. Soc. 120, 28–38 (2019). preprint arXiv:1812.07506

    MathSciNet  Article  Google Scholar 

  11. 11.

    Ferrand, D.: Conducteur, descente et pincement. Bull. Soc. Math. France 131(4), 553–585 (2003)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Grothendieck, A., Dieudonné, J.A.: Éléments de Géométrie Algébrique I. Springer, Berlin (1971)

    MATH  Google Scholar 

  13. 13.

    Gabber, O., Kelly, S.: Points in algebraic geometry. J. Pure Appl. Algebra 219(10), 4667–4680 (2015)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Goodwillie, T.G., Lichtenbaum, S.: A cohomological bound for the \(h\)-topology. Am. J. Math. 123(3), 425–443 (2001).

  15. 15.

    Gruson, L., Raynaud, M.: Critères de platitude et de projectivité. Invent. Math. 13(1–2), 1–89 (1971)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Henriksen, M., Jerison, M.: The space of minimal prime ideals of a commutative ring. Trans. Am. Math. Soc. 115, 110–130 (1965)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Huber, A., Kelly, S.: Differential forms in positive characteristic, II: cdh-descent via functorial Riemann-Zariski spaces. Algebra Number Theory 12(3), 649–692 (2018).

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Hoyois, M.: A quadratic refinement of the Grothendieck–Lefschetz–Verdier trace formula. Algebr. Geom. Topol. 14(6), 3603–3658 (2014)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Hoyois, M.: The six operations in equivariant motivic homotopy theory. Adv. Math. 305, 197–279 (2017)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Jaffard, P.: Théorie de la dimension dans les anneaux de polynômes. Mém. Sci. Math 146, 20 (1960)

    MATH  Google Scholar 

  21. 21.

    Kelly, S.: A better comparison of cdh- and ldh-cohomologies. Nagoya Math. J. 236, 183–213 (2019). arXiv:1807.00158 (preprint)

  22. 22.

    Kelly, S., Morrow, M.: \(K\)-theory of valuation rings (2018). arXiv:1810.12203v1

  23. 23.

    Land, M., Tamme, G.: On the K-theory of pullbacks. Ann. Math. 190(3), 877–930 (2019). preprint arXiv:1808.05559

    MathSciNet  Article  Google Scholar 

  24. 24.

    Lurie, J.: On Infinity Topoi (2003). arXiv:math/0306109v2

  25. 25.

    Lurie, J.: Higher Topos Theory (2017).

  26. 26.

    Lurie, J.: Spectral Algebraic Geometry (2018).

  27. 27.

    Milnor, J.W., Husemoller, D.: Symmetric Bilinear Forms, vol. 60. Springer, Berlin (1973)

    Book  Google Scholar 

  28. 28.

    Milnor, J.: Introduction to algebraic \(K\)-theory. Ann. Math. Stud. 72, xiii+184

  29. 29.

    Morrow, M.: Pro unitality and pro excision in algebraic K-theory and cyclic homology. J. Reine Angew. Math. 736, 95–139 (2018)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Nagata, M.: On the theory of Henselian rings. Nagoya Math. J. 5, 45–57 (1953).

  31. 31.

    Rydh, D.: Submersions and effective descent of étale morphisms. Bull. Soc. Math. France 138(2), 181–230 (2010). preprint arXiv:0710.2488

    MathSciNet  Article  Google Scholar 

  32. 32.

    The Stacks Project Authors, The Stacks Project (2019).

  33. 33.

    Suslin, A.: Motivic complexes over nonperfect fields. Ann. K-Theory 2(2), 277–302 (2017)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Suslin, A., Voevodsky, V.: Relative cycles and chow sheaves, cycles, transfers, and motivic homology theories. Ann. Math. Stud. 143, 10–86 (2000)

    MATH  Google Scholar 

  35. 35.

    Temkin, M.: Stable modification of relative curves. J. Algebr. Geom. 19, 603–677 (2010)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Temkin, M.: Relative Riemann–Zariski spaces. Israel J. Math. 185, 1–42 (2011).

    MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    Temkin, M.: Inseparable local uniformization. J. Algebra 373, 65–119 (2013).

    MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    Voevodsky, V.: Homology of schemes. Sel. Math. (N.S.) 2(1), 111–153 (1996). preprint K-theory:0031

    MathSciNet  Article  Google Scholar 

  39. 39.

    Voevodsky, V.: Homotopy theory of simplicial sheaves in completely decomposable topologies. J. Pure Appl. Algebra 214(8), 1384–1398 (2010).

    MathSciNet  Article  MATH  Google Scholar 

  40. 40.

    Voevodsky, V.: Unstable motivic homotopy categories in Nisnevich and cdh-topologies. J. Pure Appl. Algebra 214(8), 1399–1406 (2010).

    MathSciNet  Article  MATH  Google Scholar 

  41. 41.

    Voevodsky, V.: On motivic cohomology with \(\mathbb{Z}/l\)-coefficients. Ann. Math. 174(1), 401–438 (2011). preprint arXiv:0805.4430

    MathSciNet  Article  Google Scholar 

  42. 42.

    Weibel, C.A.: Homotopy algebraic \(K\)-theory, algebraic K-theory and number theory. Contemp. Math. 83, 461–488 (1989)

    Article  Google Scholar 

  43. 43.

    Zariski, O.: Local uniformization on algebraic varieties. Ann. Math. 41(4), 852–896 (1940)

    MathSciNet  Article  Google Scholar 

Download references


We would like to thank Akhil Mathew and Bhargav Bhatt for some useful discussions about the results of [4] and Benjamin Antieau for communicating Theorem 3.4.5.

This work was partially supported by the National Science Foundation under grant DMS-1440140, while the first two authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the “Derived Algebraic Geometry” program in spring 2019.

Author information



Corresponding author

Correspondence to Elden Elmanto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Vasudevan Srinivas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elmanto, E., Hoyois, M., Iwasa, R. et al. Cdh descent, cdarc descent, and Milnor excision. Math. Ann. 379, 1011–1045 (2021).

Download citation