Skip to main content
Log in

Globally F-regular type of moduli spaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove that moduli spaces of semistable parabolic bundles and generalized parabolic sheaves with fixed determinant on a smooth projective curve are of globally F-regular type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brion, M., Kumar, S.: Frobenius Splitting Methods in Geometry and Representation Theory, Progress in Mathematics, 231. Birkhäuser, Boston (2005)

    Book  Google Scholar 

  2. Grothendieck, A.: EGA IV. Publ. IHES 28, 5–255 (1966)

    Article  Google Scholar 

  3. Knop, F.: Der kanonische moduleines invariantenrings. J. Algebra 127, 40–54 (1989)

    Article  MathSciNet  Google Scholar 

  4. Kumar, S., Lauritzen, N., Thomsen, J.F.: Frobenius splitting of cotangent bundles of flag varieties. Invent. Math. 136, 603–621 (1999)

    Article  MathSciNet  Google Scholar 

  5. Lauritzen, N., Raben-Pedersen, U., Thomsen, J.F.: Global F-regularity of Schubert varieties with applications to D-modules. J. Am. Math. Soc. 19, 345–355 (2006)

    Article  MathSciNet  Google Scholar 

  6. Mehta, V.B., Ramadas, T.R.: Moduli of vector bundles, Frobenius splitting, and invariant theory. Ann. Math. 144, 269–313 (1996)

    Article  MathSciNet  Google Scholar 

  7. Mehta, V.B., Ramanathan, A.: Frobenius splitting and cohomology vanishing for Schubert varieties. Ann. Math. 122, 27–40 (1985)

    Article  MathSciNet  Google Scholar 

  8. Mehta, V.B., Ramanathan, A.: Schubert varieties in \(G/B\times G/B\). Compos. Math. 67, 355–358 (1988)

    MATH  Google Scholar 

  9. Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 34. SpringerBerlin, Berlin (1994)

    Google Scholar 

  10. Mustata, M., Srinivas, V.: Ordinary varieties and the comparison between multiplier ideals and test ideals. Nagoya Math. J. 204, 125–157 (2011)

    Article  MathSciNet  Google Scholar 

  11. Narasimhan, M.S., Ramadas, T.R.: Factorisation of generalised theta functions I. Invent. Math. 114, 217–235 (1993)

    Article  MathSciNet  Google Scholar 

  12. Pauly, C.: Espaces de modules de fibrés paraboliques et blocs conformes. Duke Math. J. 84, 565–623 (1996)

    Article  MathSciNet  Google Scholar 

  13. Ramanan, S., Ramanathan, A.: Projective normality of flag varieties and Schubert varieties. Invent. Math. 79, 217–224 (1985)

    Article  MathSciNet  Google Scholar 

  14. Schwede, K., Smith, K.E.: Globally F-regular and log Fano varieties. Adv. Math. 224, 863–894 (2010)

    Article  MathSciNet  Google Scholar 

  15. Seshadri, C.S.: Geometric reductivity over arbitrary base. Adv. Math. 26, 225–274 (1977)

    Article  MathSciNet  Google Scholar 

  16. Smith, K.E.: Globally F-regular varieties: applications to vanishing theorems for quotients of Fano varieties. Mich. Math J. 48, 553–572 (2000)

    Article  MathSciNet  Google Scholar 

  17. Sun, X.: Degeneration of moduli spaces and generalized theta functions. J. Algebr. Geometry 9, 459–527 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Sun, X.: Factorization of generalized theta functions in the reducible case. Ark. Mat. 41, 165–202 (2003)

    Article  MathSciNet  Google Scholar 

  19. Sun, X.: Factorization of generalized theta functions revisited. Algebra Colloquium. 24(1), 1–52 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Xiaotao Sun would like to thank C. S. Seshadri for a number of emails of discussions about Lemma 2.9, and he also would like to thank K. Schwede and K. E. Smith for discussions (by emails) of globally F-regular type varieties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaotao Sun.

Additional information

Communicated by Vasudevan Srinivas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Both authors are supported by the National Natural Science Foundation of China No.11831013 and No.11921001; Mingshuo Zhou is also supported by the National Natural Science Foundation of China No.11501154.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Zhou, M. Globally F-regular type of moduli spaces. Math. Ann. 378, 1245–1270 (2020). https://doi.org/10.1007/s00208-020-02077-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02077-3

Mathematics Subject Classification

Navigation