Skip to main content
Log in

Nonlinear spectral instability of steady-state flow of a viscous liquid past a rotating obstacle

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We show that a steady-state solution to the system of equations of a Navier–Stokes flow past a rotating body is nonlinearly unstable if the associated linear operator \(\mathcal {L}\) has a part of the spectrum in the half-plane \(\{\lambda \in \mathbb {C};\ \mathrm{Re}\, \lambda >0\}\). Our result does not follow from known methods, mainly because the basic nonlinear operator is not bounded in the same space in which the instability is studied. As an auxiliary result of independent interest, we also show that the uniform growth bound of the \(C_0\)-semigroup \(\mathrm {e}^{\mathcal {L}t}\) is equal to the spectral bound of operator \(\mathcal {L}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borchers, W.: Zur Stabilität und Faktorisierungsmethode für die Navier–Stokes Gleichungen inkompressibler viskoser Flüssigkeiten. Habilitation thesis, University of Paderborn (1992)

  2. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  3. Cumsille, P., Tucsnak, M.: Wellpossedness for the Navier–Stokes flow in the exterior of a rotating obstacle. Math. Methods Appl. Sci 29, 595–623 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Daleckij, YuL, Krejn, M.G.: Stability of Solutions of Differential Equations in a Banach Space. Nauka, Moscow (1970). (Russian)

    Google Scholar 

  5. Deuring, P., Neustupa, J.: An eigenvalue criterion for stability of a steady Navier–Stokes flow in \(\mathbb{R}^3\). J. Math. Fluid Mech. 12(2), 202–242 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Deuring, P., Kračmar, S., Nečasová, Š.: Pointwise decay of stationary rotational viscous incompressible flows with nonzero velocity at infinity. J. Differ. Equ. 255(7), 1576–1606 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Deuring, P., Kračmar, S., Nečasová, Š.: A leading term for the velocity of stationary viscous incompressible flow around a rigid body performing a rotation and a translation. Discrete Contin. Dyn. Syst. A 37(3), 1389–1409 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Deuring, P.: Stability of stationary viscous incompressible ow around a rigid body performing a translation. J. Math. Fluid Mech. 20, 937–967 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Dušek, J.: Path Instabilities of Axisymmetric Bodies Falling or Rising Under the Action of Gravity and Hydrodynamic Forces in a Newtonian Fluid. Particles in Flows, pp. 397–451. Birkhäuser, Cham (2017)

    MATH  Google Scholar 

  10. Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York (2000)

    MATH  Google Scholar 

  11. Farwig, R.: An \(L^q\)-analysis of viscous fluid flow past a rotating obstacle. Tohoku Math. J. 58, 129–147 (2005)

    MATH  Google Scholar 

  12. Farwig, R., Neustupa, J.: On the spectrum of a Stokes-type operator arising from flow around a rotating body. Manuscr. Math. 122, 419–437 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Farwig, R., Neustupa, J.: On the spectrum of an Oseen-type operator arising from flow past a rotating body. Integr. Equ. Oper. Theory 62, 169–189 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Farwig, R., Krbec, M., Nečasová, Š.: \(L^q\)-approach to Oseen flow around a rotating body. Math. Methods Appl. Sci. 31(5), 551–574 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Farwig, R., Neustupa, J.: On the spectrum of an Oseen-type operator arising from fluid flow past a rotating body in \(L^q_{\sigma }(\Omega )\). Tohoku Math. J. 62(2), 287–309 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Farwig, R., Nečasová, Š., Neustupa, J.: Spectral analysis of a Stokes-type operator arising from flow around a rotating body. J. Math. Soc. Jpn. 63(1), 163–194 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Friedlander, S., Strauss, W., Vichik, M.: Nonlinear instability in ideal fluid. Ann. Inst. H. Poincaré Anal. Non Linéaire 14(2), 187–209 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Friedlander, S., Pavlovich, N., Shvydkoy, R.: Nonlinear instability for the Navier–Stokes equations. Commun. Math. Phys. 204, 335–347 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Steady-State Problems, 2nd edn. Springer, New York (2011)

    MATH  Google Scholar 

  20. Galdi, G.P.: On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. 1. Elsevier, Amsterdam (2002)

    Google Scholar 

  21. Galdi, G.P.: Steady flow of a Navier–Stokes fluid around a rotating obstacle. J. Elast. 71, 1–31 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Galdi, G.P., Silvestre, A.L.: Strong Solutions to the Problem of Motion of a Rigid Body in a Navier–Stokes Liquid Under the Action of Prescribed Forces and Torques. Nonlinear Problems in Mathematical Physics and Related Topics I, vol. 1, pp. 121–144. Kluwer, New York (2002)

    MATH  Google Scholar 

  23. Galdi, G.P., Silvestre, A.L.: Strong solutions to the Navier–Stokes equations around a rotating obstacle. Arch. Ration. Mech. Anal. 176, 331–350 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Galdi, G.P., Silvestre, A.L.: The steady motion of a Navier–Stokes liquid around a rigid body. Arch. Ration. Mech. Anal. 184, 371–400 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Galdi, G.P., Neustupa, J.: Stability of steady flow past a rotating body. In: Suzuki, Y., Shibata, Y. (eds.) Mathematical Fluid Dynamics, Present and Future, vol. 183, pp. 71–94. Springer, Tokyo (2016)

    Google Scholar 

  26. Galdi, G.P., Neustupa, J.: Steady flows around moving bodies. In: Giga, Y., Novotný, A. (eds.) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, pp. 341–417. Springer, New York (2018)

    Google Scholar 

  27. Geissert, M., Heck, H., Hieber, M.: \(L^p\)-theory of the Navier–Stokes flow in the exterior of a moving or rotating obstacle. J. Reine Angew. Math. 596, 45–62 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

    Google Scholar 

  29. Heywood, J.G.: The exterior nonstationary problem for the Navier–Stokes equations. Acta Math. 129, 11–34 (1972)

    MathSciNet  MATH  Google Scholar 

  30. Heywood, J.G.: The Navier–Stokes equations: on the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29, 639–681 (1980)

    MathSciNet  MATH  Google Scholar 

  31. Hishida, T.: The Stokes operator with rotation effect in exterior domains. Analysis 19, 51–67 (1999)

    MathSciNet  MATH  Google Scholar 

  32. Hishida, T.: An existence theorem for the Navier–Stokes flow in the exterior of a rotating obstacle. Arch. Ration. Mech. Anal. 150, 307–348 (1999)

    MathSciNet  MATH  Google Scholar 

  33. Hishida, T.: \(L^q\) estimates of weak solutions to the stationary Stokes equations around a rotating body. J. Math. Soc. Jpn. 58, 743–767 (2006)

    MATH  Google Scholar 

  34. Hishida, T., Shibata, Y.: \(L_p\)-\(L_q\) estimate of the Stokes operator and Navier–Stokes flows in the exterior of a rotating obstacle. Arch. Ration. Mech. Anal. 193, 339–421 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966)

    MATH  Google Scholar 

  36. Kielhöfer, H.: Stability and semilinear evolution equations in Hilbert space. Arch. Ration. Mech. Anal. 57, 150–165 (1974)

    MathSciNet  Google Scholar 

  37. Masuda, K.: On the stability of incompressible viscous fluid motions past objects. J. Math. Soc. Jpn. 27, 294–327 (1975)

    MathSciNet  MATH  Google Scholar 

  38. Miyakawa, T.: On nonstationary solutions of the Navier–Stokes equations in an exterior domain. Hiroshima Math. J. 12, 115–140 (1982)

    MathSciNet  MATH  Google Scholar 

  39. Neustupa, J.: Stability of a steady viscous incompressible flow past an obstacle. J. Math. Fluid Mech. 11, 22–45 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Neustupa, J.: Existence of a weak solution to the Navier–Stokes equation in a general time-varying domain by the Rothe method. Math. Methods Appl. Sci. 32, 653–683 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Neustupa, J.: A spectral criterion for stability of a steady viscous incompressible flow past an obstacle. J. Math. Fluid Mech. 18, 133–156 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Sattinger, D.H.: The mathematical problem of hydrodynamic stability. J. Math. Mech. 18, 797–817 (1970)

    MathSciNet  MATH  Google Scholar 

  43. Sazonov, L.I.: Justification of the linearization method in the flow problem. Izv. Ross. Akad. Nauk Ser. Mat. 58, 85–109 (1994). (Russian)

    MATH  Google Scholar 

  44. Schechter, M.: On the essential spectrum of an arbitrary operator I. J. Math. Anal. Appl. 13, 205–215 (1966)

    MathSciNet  MATH  Google Scholar 

  45. Shatah, J., Strauss, W.: Spectral condition for instability. Contemp. Math. 255, 189–198 (2000)

    MathSciNet  MATH  Google Scholar 

  46. Shibata, Y.: On the Oseen semigroup with rotating effect. In: Analysis, Functional, Equations, Evolution (eds.) The Günter Lumer Volume, pp. 595–611. Basel, Birkhauser Verlar (2009)

    Google Scholar 

  47. Shibata, Y.: On a \(C_0\) semigroup associated with a modified Oseen equation with rotating effect. Advances in Mathematical Fluid Mechanics, pp. 513–551. Springer, Berlin (2010)

    MATH  Google Scholar 

  48. Shibata, Y.: A stability theorem of the Navier–Stokes flow past a rotating body. In: Proceedings of the Conference “Parabolic and Navier–Stokes Equations”. Banach Center Publications Vol. 81, Institute of Mathematics, Polish Academy of Sciences, Warsaw, pp. 441–455 (2008)

  49. van Neerven, J.: The Asymptotic Behaviour of Semigroups of Linear Operators. Birkhäuser-Verlag, Basel (1996)

    MATH  Google Scholar 

  50. Yudovich, V.I.: The Linearization Method in Hydrodynamical Stability Theory. Translations of Mathematical Monographs, vol. 74. American Mathematical Society, Providence (1989)

    Google Scholar 

Download references

Acknowledgements

Part of this work was carried out when the first author was tenured with the Eduard Čech Distinguished Professorship at the Mathematical Institute of the Czech Academy of Sciences in Prague. His work is also partially supported by NSF Grant DMS-1614011 and the Mathematical Institute of the Czech Academy of Sciences (RVO 67985840). The second author also acknowledges the support of the Grant Agency of the Czech Republic (Grant no. 17-01747S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Neustupa.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galdi, G.P., Neustupa, J. Nonlinear spectral instability of steady-state flow of a viscous liquid past a rotating obstacle. Math. Ann. 382, 357–382 (2022). https://doi.org/10.1007/s00208-020-02045-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02045-x

Mathematics Subject Classification

Navigation