Skip to main content
Log in

Vortex stretching and enhanced dissipation for the incompressible 3D Navier–Stokes equations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider the 3D incompressible Navier–Stokes equations under the following \(2+\frac{1}{2}\)-dimensional situation: small-scale horizontal vortex blob being stretched by large-scale, anti-parallel pairs of vertical vortex tubes. We prove enhanced dissipation induced by such vortex-stretching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. This computation was suggested to us by one of the referees.

References

  1. Bahouri, H., Chemin, J.-Y.: Équations de transport relatives á des champs de vecteurs non-lipschitziens et mécanique des fluides. Arch. Rational Mech. Anal. 127, 159–181 (1994)

    Article  MathSciNet  Google Scholar 

  2. Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)

    Article  MathSciNet  Google Scholar 

  3. Bourgain, J., Li, D.: Strong ill-posedness of the incompressible Euler equations in borderline Sobolev spaces. Invent. math. 201, 97–157 (2015)

    Article  MathSciNet  Google Scholar 

  4. Buckmaster, T., De Lellis, C., Székelyhidi Jr., L., Vicol, V.: Onsager’s conjecture for admissible weak solutions. Comm. Pure Appl. Math. 72(2), 229–274 (2019)

    Article  MathSciNet  Google Scholar 

  5. Buckmaster, T., Vicol, V.: Convex integration and phenomenologies in turbulence. EMS Surv. Math. Sci. 6(1), 173–263 (2019)

    Article  MathSciNet  Google Scholar 

  6. Constantin, P.: The Littlewood–Paley spectrum in two-dimensional turbulence. Theo. Comput. Fluid Dynam. 9, 183–189 (1997)

    Article  Google Scholar 

  7. Cheskidov, A., Constantin, P., Friedlander, S., Shvydkoy, R.: Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity 21(6), 1233–1252 (2008)

    Article  MathSciNet  Google Scholar 

  8. Crippa, G., De Lellis, C.: Estimates and regularity results for the DiPerna–Lions flow. J. Reine Angew. Math. 616, 15–46 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Constantin, P., W. E, E. Titi, : Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Comm. Math. Phys. 165(1), 207–209 (1994)

  10. Denisov, S.: Double exponential growth of the vorticity gradient for the two-dimensional Euler equation. Proc. Amer. Math. Soc. 143, 1199–1210 (2015)

    Article  MathSciNet  Google Scholar 

  11. Denisov, S.: Infinite superlinear growth of the gradient for the two-dimensional Euler equation. Discrete Contin. Dyn. Syst. 23(3), 755–764 (2009)

    Article  MathSciNet  Google Scholar 

  12. Drivas, T.D.: Turbulent cascade direction and Lagrangian time-asymmetry. J. Nonlinear Sci. 1–24, (2018)

  13. Drivas, T.D., Eyink, G.L.: An onsager Ssngularity theorem for leray solutions of lncompressible Navier–Stokes. Nonlinearity 32(11), 4465–4482 (2019)

    Article  MathSciNet  Google Scholar 

  14. Elgindi, T., Jeong, I.-J.: Ill-posedness for the incompressible Euler equations in critical Sobolev spaces. Ann. PDE 3, 7 (2017)

    Article  MathSciNet  Google Scholar 

  15. T. Elgindi and I.-J. Jeong, On Singular Vortex Patches, I: well-posedness issues, Memoirs of the AMS, to appear

  16. Elgindi, T., Masmoudi, N.: \(L^\infty \) ill-posedness for a class of equations arising in hydrodynamics. Arch. Ration. Mech. Anal. 235(3), 1979–2025 (2020)

    Article  MathSciNet  Google Scholar 

  17. Eyink, G.L.: Multi-scale gradient expansion of the turbulent stress tensor. J. Fluid Mech. 549, 159–190 (2006)

    Article  MathSciNet  Google Scholar 

  18. G. L. Eyink, Review of the Onsager “Ideal Turbulence” Theory, arXiv:1803.02223

  19. Frisch, U.: Turbulence. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  20. Goto, S.: Developed turbulence: on the energy cascade. The Nihon Butsuri Gakkaishi (Butsuri) 73, 457–462 (2018)

    Google Scholar 

  21. Goto, S., Saito, Y., Kawahara, G.: Hierarchy of antiparallel vortex tubes in spatially periodic turbulence at high Reynolds numbers. Phys. Rev. Fluids 2, 064603 (2017)

    Article  Google Scholar 

  22. Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K., Uno, A.: Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys Fluids 15(2), L21–L24 (2003)

    Article  Google Scholar 

  23. Kiselev, A., Sverak, V.: Small scale creation for solutions of the incompressible two-dimensional Euler equation. Ann Math. 180, 1205–1220 (2014)

    Article  MathSciNet  Google Scholar 

  24. Kolmogorov, A.: Local structure of turbulence in an incompressible fluid at very high reynolds number. Dokl. Acad. Nauk SSSR 30(4), 299–303 (1941)

    Google Scholar 

  25. Luo, X., Shvydkoy, R.: 2D homogeneous solutions to the Euler equation. Comm. Partial Diff. Eq. 40(9), 1666–1687 (2015)

    Article  MathSciNet  Google Scholar 

  26. Luo, X., Shvydkoy, R.: Addendum: 2D homogeneous solutions to the Euler equation. Comm. Partial Diff. Eq. 42(3), 491–493 (2017)

    Article  Google Scholar 

  27. Mazzucato, A.L.: On the energy spectrum for weak solutions of the Navier–Stokes equations. Nonlinearity 18, 1–19 (2005)

    Article  MathSciNet  Google Scholar 

  28. Miura, H., Kida, S.: Identification of tubular vortices in turbulence. J. Phys. Soc. Japan 66, 1331 (1997)

    Article  Google Scholar 

  29. Miura, H., Kida, S.: Swirl condition in low-pressure vortex. J. Phys. Soc. Japan 67, 2166 (1998)

    Article  Google Scholar 

  30. Misiołek, G., Yoneda, T.: Continuity of the solution map of the Euler equations in Hölder spaces and weak norm inflation in Besov spaces. Trans. Amer. Math. Soc. 370, 4709–4730 (2018)

    Article  MathSciNet  Google Scholar 

  31. Shvydkoy, R.: Homogeneous solutions to the 3D Euler system. Trans. Amer. Math. Soc. 370, 2517–2535 (2018)

    Article  MathSciNet  Google Scholar 

  32. Vassilicos, J.: Dissipation in turbulent flows. Annual Review of Fluid Mechanics 47, 95–114 (2015)

    Article  MathSciNet  Google Scholar 

  33. Zlatos, A.: Exponential growth of the vorticity gradient for the Euler equation on the torus. Adv. Math. 268, 396–403 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the anonymous referees for very helpful comments regarding the manuscript, which have been incorporated in the current paper. We especially thank one of the referees for kindly providing us the calculations 1.3.3, which clarifies the situation. We thank Professors A. Mazzucato and T. Drivas for inspiring communications and telling us about the articles [8] and [13], respectively. We are also grateful to Professors P. Constantin and T. Elgindi for valuable comments. Research of TY was partially supported by Grant-in-Aid for Young Scientists A (17H04825), Grant-in-Aid for Scientific Research B (15H03621, 17H02860, 18H01136 and 18H01135), Japan Society for the Promotion of Science (JSPS). IJ has been supported by a KIAS Individual Grant MG066202 at Korea Institute for Advanced Study, the Science Fellowship of POSCO TJ Park Foundation, and the National Research Foundation of Korea grant No. 2019R1F1A1058486.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Jee Jeong.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, IJ., Yoneda, T. Vortex stretching and enhanced dissipation for the incompressible 3D Navier–Stokes equations. Math. Ann. 380, 2041–2072 (2021). https://doi.org/10.1007/s00208-020-02019-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02019-z

Navigation