Skip to main content
Log in

Quotients and invariants of \(\mathcal {AS}\)-sets equipped with a finite group action

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Using the geometric quotient of a real algebraic set by the action of a finite group G, we construct invariants of G-affine real algebraic varieties with respect to equivariant homeomorphisms with algebraic graph, including additive invariants with values in \({\mathbb {Z}}\). The construction requires to consider the wider category of \(\mathcal {AS}\)-sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akbulut, S., King, H.: The Topology of Real Algebraic Sets, MSRI Publications, vol. 25. Springer, New York (1992)

    Book  Google Scholar 

  2. Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley, New York (1969)

    MATH  Google Scholar 

  3. Bierstone, E., Milman, P.D.: Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. Invent. Math. 128, 207–302 (1997)

    Article  MathSciNet  Google Scholar 

  4. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Springer, New York (1992)

    MATH  Google Scholar 

  5. Borel, A.: Seminar on Transformation Groups, Annals of Mathematics Studies, vol. 46. Princeton University Press, Princeton (1960)

    Google Scholar 

  6. Brown, K.S.: Cohomology of groups, Graduate texts in Mathematics, vol. 87. Springer, New York (1982)

    Book  Google Scholar 

  7. Campesato, J.-B.: On a motivic invariant of the arc-analytic equivalence. Ann. Inst. Fourier (Grenoble) 67, 143–196 (2017)

    Article  MathSciNet  Google Scholar 

  8. Fichou, G.: Motivic invariants of Arc-symmetric sets and Blow–Nash equivalence. Composit. Math. 141, 655–688 (2005)

    Article  MathSciNet  Google Scholar 

  9. Fichou, G.: Zeta functions and Blow–Nash equivalence. Ann. Polon. Math. 87, 111–125 (2005)

    Article  MathSciNet  Google Scholar 

  10. Fichou, G.: Equivariant virtual Betti numbers. Ann. de l’Inst. Fourier 58(1), 1–27 (2008)

    Article  MathSciNet  Google Scholar 

  11. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  12. Kurdyka, K., Parusiński, A.: Arc-symmetric sets and arc-analytic mappings, Panoramas et Synthèses, vol. 24. Soc. Math. France, pp. 33–67 (2007)

  13. Limoges, T., Priziac, F.: Cohomology and products of real weight filtrations. Ann. de l’Institut Fourier 65(5), 2235–2271 (2015). https://doi.org/10.5802/aif.2987

    Article  MathSciNet  MATH  Google Scholar 

  14. McCleary, J.: A User’s Guide to Spectral Sequences, 2nd edn. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  15. McCrory, C., Parusiński, A.: Virtual Betti numbers of real algebraic varieties. C. R. Math. Acad. Sci. Paris 336(9), 763–768 (2003)

    Article  MathSciNet  Google Scholar 

  16. McCrory, C., Parusiński, A.: The weight filtration for real algebraic varieties, Topology of stratified spaces, pp. 121–160, Math. Sci. Res. Inst. Publ., vol. 58. Cambridge University Press, Cambridge (2011)

  17. Noether, E.: Der Endlichkeitssatz der Invarianten endlicher Gruppen. Math. Ann. 77(1), 89–92 (1915)

    Article  MathSciNet  Google Scholar 

  18. Ozan, Y.: Quotients of real algebraic sets via finite group actions. Tr. J. Math. 21, 493–499 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Park, D.H., Suh, D.Y.: Semialgebraic \(G\) \(CW\) complex structure of semialgebraic \(G\) spaces. J. Korean Math. Soc. 35(2), 371–386 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Priziac, F.: Equivariant weight filtration for real algebraic varieties with action. J. Math. Soc. Jpn. 68(4), 1789–1818 (2016). https://doi.org/10.2969/jmsj/06841789

    Article  MathSciNet  MATH  Google Scholar 

  21. Priziac, F.: Equivariant zeta functions for invariant Nash germs. Nagoya Math. J. 222(1), 100–136 (2016). https://doi.org/10.1017/nmj.2016.12

    Article  MathSciNet  MATH  Google Scholar 

  22. Priziac, F.:On the equivariant blow-Nash classification of simple invariant Nash germs, to appear in Bulletin de la Société Mathématique de France

  23. Priziac, F. : Products of real equivariant weight filtrations. manuscripta math. (2020). https://doi.org/10.1007/s00229-020-01178-2

  24. Procesi, C., Schwarz, G.: Inequalities defining orbit spaces. Invent. Math. 81, 539–554 (1985)

    Article  MathSciNet  Google Scholar 

  25. Quillen, D.: The spectrum of an equivariant cohomology ring: I. Ann. Math. 94, 549–572 (1971)

    Article  MathSciNet  Google Scholar 

  26. Schwarz, G.: Smooth functions invariant under the action of a compact Lie group. Topology 14, 63–68 (1975)

    Article  MathSciNet  Google Scholar 

  27. Shafarevich, I.R.: Basic Algebraic Geometry 1. Springer, Berlin (1994)

    Book  Google Scholar 

  28. Spanier, E.: Algebraic Topology. Springer, New York (1966)

    MATH  Google Scholar 

  29. van Hamel, J.: Algebraic cycles and topology of real algebraic varieties, CWI Tract 129. Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam (1997)

Download references

Acknowledgements

The author wishes to thank J.-B. Campesato, G. Fichou and A. Parusiński for useful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Priziac.

Additional information

Communicated by Jean-Yves Welschinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priziac, F. Quotients and invariants of \(\mathcal {AS}\)-sets equipped with a finite group action. Math. Ann. 377, 1015–1055 (2020). https://doi.org/10.1007/s00208-020-01994-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-01994-7

Mathematics Subject Classification

Navigation