Skip to main content
Log in

Minimisers and Kellogg’s theorem

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We extend the celebrated theorem of Kellogg for conformal mappings to the minimizers of Dirichlet energy. Namely we prove that a diffeomorphic minimizer of Dirichlet energy of Sobolev mappings between doubly connected domains D and \(\Omega \) having \({\mathscr {C}}^{n,\alpha }\) boundary is \({\mathscr {C}}^{n,\alpha }\) up to the boundary, provided \({{\,\mathrm{Mod}\,}}(D)\geqslant {{\,\mathrm{Mod}\,}}(\Omega )\). If \({{\,\mathrm{Mod}\,}}(D)< {{\,\mathrm{Mod}\,}}(\Omega )\) and \(n=1\) we obtain that the diffeomorphic minimizer has \({\mathscr {C}}^{1,\alpha '}\) extension up to the boundary, for \(\alpha '=\alpha /(2+\alpha )\). It is crucial that, every diffeomorphic minimizer of Dirichlet energy has a very special Hopf differential and this fact is used to prove that every diffeomorphic minimizer of Dirichlet energy can be locally lifted to a certain minimal surface near an arbitrary point inside and at the boundary. This is a complementary result of an existence results proved by Iwaniec et al. (Invent Math 186(3):667–707, 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Astala, K., Iwaniec, T., Martin, G.J.: Deformations of annuli with smallest mean distortion. Arch. Ration. Mech. Anal. 195, 899–921 (2010)

    Article  MathSciNet  Google Scholar 

  2. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory. Springer, New York (1992)

    Book  Google Scholar 

  3. Cristina, J., Iwaniec, T., Kovalev, L.V., Onninen, J.: The Hopf-Laplace equation: harmonicity and regularity. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 13(4), 1145–1187 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Dierkes, U., Hildebrandt, S., Tromba, A.J.: Regularity of Minimal Surfaces. Grundlehren der mathematischen Wissenschaften, vol. 340. Springer, Berlin (2010)

    Book  Google Scholar 

  5. Duren, P.: Harmonic Mappings in the Plane. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  6. Garnett, J.: Bounded Analytic Functions. Academic Press, New York (1981)

    MATH  Google Scholar 

  7. Goluzin, G.M.: Geometric Function Theory of a Complex Variable, Transl. of Math. Monographs, vol. 26. AMS, Providence (1969)

    Book  Google Scholar 

  8. Hélein, F.: On weakly harmonic maps and Noether harmonic maps from a Riemann surface into a Riemannian manifold. Banach Center Publ. 27, 175–181 (1992)

    Article  MathSciNet  Google Scholar 

  9. Hélein, F.: Regularity of weakly harmonic maps between a surface and a Riemannian manifold (French). C. R. Acad. Sci., Paris, Sér. I(312), 591–596 (1991)

    MATH  Google Scholar 

  10. Iwaniec, T., Kovalev, L.V., Onninen, J.: Lipschitz regularity for inner-variational equations. Duke Math. J. 162(4), 643–672 (2013)

    Article  MathSciNet  Google Scholar 

  11. Iwaniec, T., Kovalev, L.V., Onninen, J.: The Nitsche conjecture. J. Am. Math. Soc. 24, 345–373 (2011)

    Article  MathSciNet  Google Scholar 

  12. Iwaniec, T., Koh, K.-T., Kovalev, L., Onninen, J.: Existence of energy-minimal diffeomorphisms between doubly connected domains. Invent. Math. 186(3), 667–707 (2011)

    Article  MathSciNet  Google Scholar 

  13. Jost, J.: Minimal surfaces and Teichmüller theory. In: Yau, S.-T. (ed.) Tsing Hua Lectures on Geometry and Analysis, Taiwan, 1990–91, pp. 149–211. International Press, Cambridge (1997)

    Google Scholar 

  14. Jost, J.: Two-Dimensional Geometric Variational Problems. Wiley, Chichester (1991)

    MATH  Google Scholar 

  15. Jost, J.: Harmonic maps between surfaces (with a special chapter on conformal mappings). Lecture Notes in Mathematics, vol. 1062. Springer, Berlin (1984)

    MATH  Google Scholar 

  16. Kalaj, D.: Energy-minimal diffeomorphisms between doubly connected Riemann surfaces. Calc. Var. Partial Differ. Equ. 51(1–2), 465–494 (2014)

    Article  MathSciNet  Google Scholar 

  17. Kalaj, D.: Lipschitz property of minimisers between double connected surfaces. J. Geom. Anal. (2019). https://doi.org/10.1007/s12220-019-00235-x

  18. Kalaj, D., Mateljevic, M.: \((K, K^{\prime })\)-quasiconformal harmonic mappings. Potential Anal. 36(1), 117–135 (2012)

    Article  MathSciNet  Google Scholar 

  19. Kalaj, D.: On the Nitsche conjecture for harmonic mappings in \(R^2\) and \(R^3\). Isr. J. Math. 150, 241–251 (2005)

    Article  Google Scholar 

  20. Kellogg, O.: Harmonic functions and Green’s integral. Trans. Am. Math. Soc. 13, 109–132 (1912)

    MathSciNet  MATH  Google Scholar 

  21. Kinderlehrer, D.: The boundary regularity of minimal surfaces. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat. III. Ser. 23, 711–744 (1969)

    MathSciNet  MATH  Google Scholar 

  22. Koh, N.-T.: Hereditary convexity for harmonic homeomorphisms. Indiana Univ. Math. J. 64, 231–243 (2015)

    Article  MathSciNet  Google Scholar 

  23. Koh, N.-T.: Hereditary circularity for energy minimal diffeomorphisms. Conform. Geom. Dyn. 21, 369–377 (2017)

    Article  MathSciNet  Google Scholar 

  24. Lesley, F.D.: Differentiability of minimal surfaces at the boundary. Pac. J. Math. 37, 123–139 (1971)

    Article  MathSciNet  Google Scholar 

  25. Lesley, F.D., Warschawski, S.E.: Boundary behavior of the Riemann mapping function of asymptotically conformal curves. Math. Z. 179, 299–323 (1982)

    Article  MathSciNet  Google Scholar 

  26. Lyzzaik, A.: The modulus of the image annuli under univalent harmonic mappings and a conjecture of J.C.C. Nitsche. J. Lond. Math. Soc. 64, 369–384 (2001)

    Article  MathSciNet  Google Scholar 

  27. Nitsche, J.C.C.: The boundary behavior of minimal surfaces. Kellogg ’s theorem and branch points on the boundary. Invent. Math. 8, 313–333 (1969)

    Article  MathSciNet  Google Scholar 

  28. Nitsche, J.C.C.: On the modulus of doubly connected regions under harmonic mappings. Am. Math. Mon. 69, 781–782 (1962)

    Article  Google Scholar 

  29. Pommerenke, C.: Boundary Behaviour of Conformal Maps. Grundlehren der Mathematischen Wissenschaften. 299. Springer, Berlin (1992)

    Book  Google Scholar 

  30. Tam, L., Wan, T.: Quasiconformal harmonic diffeomorphism and universal Teichmüler space. J. Differ. Geom. 42, 368–410 (1995)

    Article  Google Scholar 

  31. Simon, L.: A Hölder estimate for quasiconformal maps between surfaces in Euclidean space. Acta Math. 139, 19–51 (1977)

    Article  MathSciNet  Google Scholar 

  32. Warschawski, S.E.: On differentiability at the boundary in conformal mapping. Proc. Am. Math. Soc. 12(4), 614–620 (1961)

    Article  MathSciNet  Google Scholar 

  33. Warschawski, S.E.: On differentiability at the boundary in conformal mapping. Proc. Am. Math. Soc. 12, 614–620 (1961)

    Article  MathSciNet  Google Scholar 

  34. Warschawski, S.E.: On the higher derivatives at the boundary in conformal mapping. Trans. Am. Math. Soc. 38(2), 310–340 (1935)

    Article  MathSciNet  Google Scholar 

  35. Warschawski, S.E.: Über das Randverhalten der Ableitung der Abbildungsfunktion bei konformer Abbildung. Math. Z. 35, 321–456 (1932)

    Article  MathSciNet  Google Scholar 

  36. Weitsman, A.: Univalent harmonic mappings of annuli and a conjecture of J.C.C. Nitsche. Isr. J. Math. 124, 327–331 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee for a large number of remarks that helped to improve this paper. His/her idea is used to shorten the proof of the case \(c<0\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kalaj.

Additional information

Communicated by Loukas Grafakos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaj, D., Lamel, B. Minimisers and Kellogg’s theorem. Math. Ann. 377, 1643–1672 (2020). https://doi.org/10.1007/s00208-020-01968-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-01968-9

Mathematics Subject Classification

Navigation