Advertisement

Common hyperbolic bases for chains of alternating or quadratic lattices

  • Rainer Schulze-PillotEmail author
Article
  • 18 Downloads

Abstract

We give a short and purely bilinear proof of the fact that two chains of p-elementary lattices with quadratic form or alternating bilinear form have common hyperbolic bases. This fact, which is useful for the study of Bruhat–Tits buildings, has been proven before with different methods by Abramenko and Nebe and by Frisch.

Mathematics Subject Classification

11E95 20G25 11E57 

Notes

References

  1. 1.
    Abramenko, P., Nebe, G.: Lattice chain models for affine buildings of classical type. Math. Ann. 322(3), 537–562 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bruhat, F., Tits, J.: Schémas en groupes et immeubles des groupes classiques sur un corps local. II. Groupes unitaires. Bull. Soc. Math. France 115(2), 141–195 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Eichler, M.: Quadratische Formen und Orthogonale Gruppen. In: Grundlehren der mathematischen Wissenschaften, vol. 63. Springer, New York (1952)Google Scholar
  4. 4.
    Frisch, W.: The cohomology of \(S\)-arithmetic spin groups and related Bruhat–Tits buildings. Doctoral dissertation, Göttingen (2002)Google Scholar
  5. 5.
    Garrett, P.: Buildings and Classical Groups. Chapman and Hall, London (1997)CrossRefzbMATHGoogle Scholar
  6. 6.
    Kneser, M.: Quadratische Formen. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Satake, I.: Theory of spherical functions on reductive algebraic groups over \({{\mathfrak{p}}}\)-adic fields. Inst. Hautes Études Sci. Publ. Math. 18, 5–69 (1963)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fachrichtung MathematikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations