l-Adic étale cohomology of Shimura varieties of Hodge type with non-trivial coefficients


Let \((\mathsf {G},\mathsf {X})\) be a Shimura datum of Hodge type. Let p be an odd prime such that \(\mathsf {G}_{\mathbb {Q}_p}\) splits after a tamely ramified extension and \(p\not \mid |\pi _1(\mathsf {G}^\mathrm{der})|\). Under some mild additional assumptions that are satisfied if the associated Shimura variety is proper and \(\mathsf {G}_{\mathbb {Q}_p}\) is either unramified or residually split, we prove the generalisation of Mantovan’s formula for the l-adic cohomology of the associated Shimura variety. On the way we derive some new results about the geometry of the Newton stratification of the reduction modulo p of the Kisin–Pappas integral model.

This is a preview of subscription content, access via your institution.


  1. 1.

    Variants of such a formula were also studied in [10, 53]. Readers are referred to the introduction of [21] for the works prior to loc. cit.

  2. 2.

    This is where we use the assumption that \(\mathsf {G}\) is unramified at p.

  3. 3.

    Instead of parahoric level structure, we will work with the “Bruhat–Tits level structure” for technical reasons; in other words, the level at p is given by the full stabiliser in \(\mathsf {G}(\mathbb {Q}_p)\) of some facet in the Bruhat–Tits building, not necessarily by the connected stabiliser (which is a parahoric group). Note that integral models with the “Bruhat–Tits level structure” is obtained as the normalisation of the closure of the generic fibre in some Siegel modular variety.

  4. 4.

    “Displays” over (not necessarily affine) p-adic formal schemes are described right above the statement of Proposition 4.6.

  5. 5.

    Assume that the étale \(\mathbb {Z}_l\)-sheaf \(\mathscr {F}\) is given by an inverse system \(\{\mathscr {F}_n\}\) for \(\mathscr {F}_n\in (\mathbb {Z}/l^n)\text {-}{\widetilde{X}}_{\acute{\mathrm{e}}\text {t}}\). Then a section in \(\Gamma (X,\mathscr {F})\) has proper support if its image in \(\Gamma (X,\mathscr {F}_n)\) is supported in a common quasi-compact closed subset independent of n. Therefore, \(\Gamma _c(X,\mathscr {F})\) may not coincide with the inverse limit of \(\Gamma _c(X,\mathscr {F}_n)\) in general, as it was pointed out in [24, Introduction].

  6. 6.

    In [23], \(\mathfrak {X}^\mathrm {ad}\) is denoted by \(t(\mathfrak {X})\).

  7. 7.

    We will recall the definition of compactly supported distributions in Sect. 2.4.

  8. 8.

    In [48, §3.3], the compactly supported J-equivariant cohomology is denoted by \(\mathrm {R}\Gamma _c(\mathcal {X}/J,\bullet )\), but we find this notation could lead to confusion with the compactly supported cohomology of the “quotient” \(\mathcal {X}/J\) in some suitable sense.

  9. 9.

    We would like to view \(M/\mathbb {I}_R M\) as the “first de Rham homology” of some Barsotti–Tate group, and \(M/M_1\) as the Lie algebra of the Barsotti–Tate group, which is the \((-1)\)th grading of the first de Rham homology. We follow the standard notation to let \(M_1\subset M\) denote the \(\mathbb {W}(R)\)-submodule defining the Hodge filtration (although \(M^0\) may be more natural notation as it defines the 0th filtration).

  10. 10.

    Although Faltings [9] works with the divided power completion of \(A_\mathrm{cris}(O_C)\) in place of \(A_\mathrm{cris}(O_C)\), the essentially same proof work over \(A_\mathrm{cris}(O_C)\).

  11. 11.

    Note that the two conditions Zhou imposed at the beginning of section 3 in [66], i.e. that G is quasi-split and \(\mathsf {K}_p = \mathsf {K}_p^\circ \), are not needed for this proposition. Since the construction of local models commutes with base change, we may exchange \(\mathbb {Q}_p\) by an unramified extension F such that \(G_F\) is quasi-split. Moreover \(\mathsf {K}_p = \mathsf {K}_p^\circ \) is not needed in the proof; while [66, Prop. 3.4] then proves the claim for \(\mathsf {K}_p^\circ \), we know that the canonical morphism \(\bigcup _{\tilde{w}\in {{\,\mathrm{Adm}\,}}(\mu )} \mathsf {K}_p^\circ \tilde{w}\mathsf {K}_p^\circ /\mathsf {K}_p^\circ \rightarrow \bigcup _{\tilde{w}\in {{\,\mathrm{Adm}\,}}(\mu )} \mathsf {K}_p \tilde{w}\mathsf {K}_p\) is an isomorphism by the argument of Remark 5.4.

  12. 12.

    Although our integral models are the normalisations of the integral models in [44], we can pull back the statement of [44, §7, Proposition 21] via the normalisation maps. Indeed, the formation of the formal nearby cycle sheaves commute with proper base change of formal models; cf. [3, Corollary 2.3(ii)].


  1. 1.

    Bernstein, J.N.: Le “centre” de Bernstein. In: Deligne, P. (ed.) Representations of Reductive Groups Over a Local Field, pp. 1–32. Travaux en Cours, Hermann, Paris (1984)

    Google Scholar 

  2. 2.

    Berkovich, V.G.: Vanishing cycles for formal schemes. Invent. Math. 115(3), 539–571 (1994)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Berkovich, V.G.: Vanishing cycles for formal schemes. II. Invent. Math. 125(2), 367–390 (1996)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Bhatt, B., Scholze, P.: Projectivity of the Witt vector affine Grassmannian. Invent. Math. 209(2), 329–423 (2017)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Caraiani, A., Scholze, P.: On the generic part of the cohomology of compact unitary Shimura varieties. Ann. Math. (2) 186(3), 649–766 (2017)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Dat, J.-F.: Espaces symétriques de Drinfeld et correspondance de Langlands locale. Ann. Sci. École Norm. Sup. (4) 39(1), 1–74 (2006)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Dat, J.-F.: Finitude pour les représentations lisses de groupes \(p\)-adiques. J. Inst. Math. Jussieu 8(2), 261–333 (2009)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    de Jong, A.J.: Crystalline Dieudonné module theory via formal and rigid geometry. Publ. Math. Inst. Hautes Études Sci. 82, 5–96 (1995)

    MATH  Google Scholar 

  9. 9.

    Faltings, G.: Integral crystalline cohomology over very ramified valuation rings. J. Am. Math. Soc. 12(1), 117–144 (1999)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Fargues, L.: Cohomologie des espaces de modules de groupes \(p\)-divisibles et correspondances de Langlands locales. Astérisque 291, 1–199 (2004). Variétés de Shimura, espaces de Rapoport–Zink et correspondances de Langlands locales

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Fargues, L.: Dualité de poincaré et involution de Zelevinsky dans la cohomologie équivariante des espaces rigides. Preprint (incomplete) (2006)

  12. 12.

    Fargues, L.: L’isomorphisme entre les tours de Lubin-Tate et de Drinfeld et applications cohomologiques. In: L’isomorphisme entre les tours de Lubin-Tate et de Drinfeld. Progress in Mathematics, vol. 262, pp. 1–325. Birkhäuser, Basel (2008)

  13. 13.

    Fontaine, J.-M.: Le corps des périodes \(p\)-adiques. Astérisque 223, 59–111 (1994). With an appendix by Pierre Colmez, Périodes \(p\)-adiques (Bures-sur-Yvette, 1988)

    MATH  Google Scholar 

  14. 14.

    Fontaine, J.-M.: Représentations \(p\)-adiques semi-stables. Astérisque 223, 113–184 (1994). Périodes \(p\)-adiques (Bures-sur-Yvette, 1988)

    MATH  Google Scholar 

  15. 15.

    Glaz, S.: Commutative Coherent Rings. Lecture Notes in Mathematics, vol. 1371. Springer, Berlin (1989)

    MATH  Google Scholar 

  16. 16.

    Hamacher, P.: On the Newton stratification in the good reduction of Shimura varieties. J. Algebr. Geom. (2016, to appear). arXiv:1605.05540 [math]

  17. 17.

    Hamacher, P.: The almost product structure of Newton strata in the Deformation space of a Barsotti–Tate group with crystalline Tate tensors. Math. Z. 287(3–4), 1255–1277 (2017)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Hassan, B.: Coherent rings and completion. Master’s thesis, University of Glasgow (2011)

  19. 19.

    He, X.: Kottwitz–Rapoport conjecture on unions of affine Deligne–Lusztig varieties. Ann. Sci. Éc. Norm. Supér. (4) 49(5), 1125–1141 (2016)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Howard, B., Pappas, G.: Rapoport–Zink spaces for spinor groups. Compos. Math. 153(5), 1050–1118 (2017)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Harris, M., Taylor, R.: The Geometry and Cohomology of Some Simple Shimura Varieties. Annals of Mathematics Studies, vol. 151. Princeton University Press, Princeton (2001). With an appendix by Vladimir G. Berkovich

    MATH  Google Scholar 

  22. 22.

    Huber, R.: A generalization of formal schemes and rigid analytic varieties. Math. Z. 217(4), 513–551 (1994)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Huber, R.: Étale Cohomology of Rigid Analytic Varieties and Adic Spaces. Aspects of Mathematics, E30. Friedr. Vieweg & Sohn, Braunschweig (1996)

    MATH  Google Scholar 

  24. 24.

    Huber, R.: A comparison theorem for \(l\)-adic cohomology. Compos. Math. 112(2), 217–235 (1998)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Hamacher, P., Viehmann, E.: Irreducible components of minuscule affine Deligne–Lusztig varieties. Algebra Number Theory 12(7), 1611–1634 (2018)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Hyodo, O.: On the Hodge–Tate decomposition in the imperfect residue field case. J. Reine Angew. Math. 365, 97–113 (1986)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Kim, W.: Erratum to “The relative Breuil–Kisin classification of \(p\)-divisible groups and finite flat group schemes” [MR3404012]. Int. Math. Res. Not. 17, 8353–8356 (2015)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Kim, W.: On central leaves of Hodge-type Shimura varieties with parahoric level structure. Math. Z. First Online (2018)

  29. 29.

    Kim, W.: Rapoport–Zink spaces of Hodge type. Forum Math. Sigma 6(e8), 110 (2018)

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Kisin, M.: Crystalline representations and \(F\)-crystals. In: Algebraic Geometry and Number Theory. Progress in Mathematics, vol. 253, pp. 459–496. Birkhäuser Boston, Boston (2006)

  31. 31.

    Kisin, M.: Integral models for Shimura varieties of abelian type. J. Am. Math. Soc. 23(4), 967–1012 (2010)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Kisin, M.: \(\text{ mod }\, p\) points on Shimura varieties of abelian type. J. Am. Math. Soc. 30(3), 819–914 (2017)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Kim, W., Pera, K.M.: \(2\)-adic integral canonical models. Forum Math. Sigma 4, e28 (2016)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Kottwitz, R.E.: Points on some Shimura varieties over finite fields. J. Am. Math. Soc. 5(2), 373–444 (1992)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Kisin, M., Pappas, G.: Integral models of Shimura varieties with parahoric level structure. Publ. Math. Inst. Hautes Études Sci. 128(1), 121–218 (2018)

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Lan, K.-W.: Compactifications of PEL-type Shimura varieties in ramified characteristics. Forum Math. Sigma 4(e1), 98 (2016)

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Lau, E.: Smoothness of the truncated display functor. J. Am. Math. Soc. 26(1), 129–165 (2013)

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Lau, E.: Relations between Dieudonné displays and crystalline Dieudonné theory. Algebra Number Theory 8(9), 2201–2262 (2014)

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Lau, E.: Dieudonné theory over semiperfect rings and perfectoid rings. Compos. Math. 154(9), 1974–2004 (2018)

    MathSciNet  MATH  Google Scholar 

  40. 40.

    Lan, K.-W., Stroh, B.: Nearby cycles of automorphic étale sheaves. Compos. Math. 154(1), 80–119 (2018)

    MathSciNet  MATH  Google Scholar 

  41. 41.

    Lan, K.-W., Stroh, B.: Nearby cycles of automorphic étale sheaves, II. In: Cohomology of Arithmetic Groups. Springer Proceedings in Mathematics and Statistics, vol. 245, pp. 83–106. Springer, Cham (2018)

    Google Scholar 

  42. 42.

    Madapusi Pera, K.: Toroidal compactifications of integral models of Shimura varieties of Hodge type (2012). Preprint. arXiv:1211.1731 [math]

  43. 43.

    Mantovan, E.: On certain unitary group Shimura varieties. Astérisque 291, 201–331 (2004). Variétés de Shimura, espaces de Rapoport–Zink et correspondances de Langlands locales

    MathSciNet  MATH  Google Scholar 

  44. 44.

    Mantovan, E.: On the cohomology of certain PEL-type Shimura varieties. Duke Math. J. 129(3), 573–610 (2005)

    MathSciNet  MATH  Google Scholar 

  45. 45.

    Mantovan, E.: \(l\)-adic étale cohomology of PEL type Shimura varieties with non-trivial coefficients. In: WIN–Women in Numbers. Fields Institute Communications, vol. 60, pp. 61–83. American Mathematical Society, Providence (2011)

  46. 46.

    Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics, vol. 8. Cambridge University Press, Cambridge (1986). Translated from the Japanese by M. Reid

    MATH  Google Scholar 

  47. 47.

    Mieda, Y.: Variants of formal nearby cycles. J. Inst. Math. Jussieu 13(4), 701–752 (2014)

    MathSciNet  MATH  Google Scholar 

  48. 48.

    Mieda, Y.: Zelevinsky involution and \(\ell \)-adic cohomology of the Rapoport–Zink tower. Preprint (2014). arXiv:1401.5135 [math]

  49. 49.

    Neupert, S.: Foliations and the cohomology of moduli spaces of bounded global \(G\)-shtukas. Ph.D. thesis, Technische Universität München (2016). https://mediatum.ub.tum.de/1304517

  50. 50.

    Oort, F.: Foliations in moduli spaces of abelian varieties. J. Am. Math. Soc. 17(2), 267–296 (2004)

    MathSciNet  MATH  Google Scholar 

  51. 51.

    Pappas, G., Rapoport, M.: Twisted loop groups and their affine flag varieties. Adv. Math. 219(1), 118–198 (2008). With an appendix by T. Haines and Rapoport

    MathSciNet  MATH  Google Scholar 

  52. 52.

    Pappas, G., Zhu, X.: Local models of Shimura varieties and a conjecture of Kottwitz. Invent. Math. 194(1), 147–254 (2013)

    MathSciNet  MATH  Google Scholar 

  53. 53.

    Rapoport, M.: A guide to the reduction modulo \(p\) of Shimura varieties. Astérisque 298, 271–318 (2005). Automorphic forms. I

    MathSciNet  MATH  Google Scholar 

  54. 54.

    Rapoport, M., Richartz, M.: On the classification and specialization of \(F\)-isocrystals with additional structure. Compos. Math. 103(2), 153–181 (1996)

    MathSciNet  MATH  Google Scholar 

  55. 55.

    Rapoport, M., Viehmann, E.: Towards a theory of local Shimura varieties. Münst. J. Math. 7(1), 273–326 (2014)

    MathSciNet  MATH  Google Scholar 

  56. 56.

    Rapoport, M., Zink, T.: Period Spaces for \(p\)-Divisible Groups. Annals of Mathematics Studies, vol. 141. Princeton University Press, Princeton (1996)

    MATH  Google Scholar 

  57. 57.

    Rapoport, M., Zink, T.: A finiteness theorem in the Bruhat–Tits building: an application of Landvogt’s embedding theorem. Indag. Math. (N.S.) 10(3), 449–458 (1999)

    MathSciNet  MATH  Google Scholar 

  58. 58.

    Scholze, P.: \(p\)-adic Hodge theory for rigid-analytic varieties. Forum Math. Pi 1(e1), 77 (2013)

    MathSciNet  MATH  Google Scholar 

  59. 59.

    Scholze, P.: On torsion in the cohomology of locally symmetric varieties. Ann. Math. (2) 182(3), 945–1066 (2015)

    MathSciNet  MATH  Google Scholar 

  60. 60.

    Schneider, P., Stuhler, U.: The cohomology of \(p\)-adic symmetric spaces. Invent. Math. 105(1), 47–122 (1991)

    MathSciNet  MATH  Google Scholar 

  61. 61.

    The stacks project, published under GFDL. http://math.columbia.edu/algebraic_geometry/stacks-git/browse.html

  62. 62.

    Scholze, P., Weinstein, J.: Moduli of \(p\)-divisible groups. Camb. J. Math. 1(2), 145–237 (2013)

    MathSciNet  MATH  Google Scholar 

  63. 63.

    Valabrega, P.: A few theorems on completion of excellent rings. Nagoya Math. J. 61, 127–133 (1976)

    MathSciNet  MATH  Google Scholar 

  64. 64.

    Vignéras, M.-F.: Représentations \(l\)-modulaires d’un groupe réductif \(p\)-adique avec \(l\ne p\). Progress in Mathematics, vol. 137. Birkhäuser Boston Inc, Boston (1996)

    MATH  Google Scholar 

  65. 65.

    Weibel, C.A.: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  66. 66.

    Zhou, R.: Mod-\(p\) isogeny classes on Shimura varieties with parahoric level structure. Preprint. arXiv:1707.09685 [math]

  67. 67.

    Zhu, X.: Affine Grassmannians and the geometric Satake in mixed characteristic. Ann. Math. (2) 185(2), 403–492 (2017)

    MathSciNet  MATH  Google Scholar 

  68. 68.

    Zink, T.: A Dieudonné theory for \(p\)-divisible groups. In: Class Field Theory-Its Centenary and Prospect (Tokyo, 1998). Advanced Studies in Pure Mathematics, vol. 30, pp. 139–160. Mathematical Society Japan, Tokyo (2001)

  69. 69.

    Zink, T.: The display of a formal \(p\)-divisible group. Astérisque 278, 127–248 (2002). Cohomologies \(p\)-adiques et applications arithmétiques, I

    MathSciNet  MATH  Google Scholar 

Download references


We thank Rong Zhou and Stephan Neupert for helpful conversations and in particular for sharing a preliminary version of their respective preprints with us. We are grateful to Kai-Wen Lan for his explanations about compactifications of Shimura varieties. We would also like to thank the anonymous referee, whose comments have been extremely helpful. The first named author was partially supported by the ERC starting Grant 277889 “Moduli of local G-shtukas”. The second named author was supported by the EPSRC (Engineering and Physical Sciences Research Council) in the form of EP/L025302/1.

Author information



Corresponding author

Correspondence to Wansu Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Toby Gee.


Appendix A: Homomorphisms of constant F-crystals

In order to show that the Igusa variety associated to a Barsotti–Tate group \((\mathbb {X},(t_\alpha ))\) is a flat closed subvariety of the Igusa variety associated to \(\mathbb {X}\), we will need the proposition below. To improve readability, we use the following notation. For any profinite set S and topological ring R, we denote

$$\begin{aligned} R^S :={{\,\mathrm{Map}\,}}_\mathrm{cont}(S,R). \end{aligned}$$

Unless stated explicitly otherwise, we will assume that R is equipped with the discrete topology.

Proposition A.1

Let \(M_1, M_2\) be F-crystals over an algebraically closed field k. Denote \(H = {{\,\mathrm{Hom}\,}}(M_1,M_2)\) with the p-adic topology. We denote by the same symbol the associated k-ring scheme \({{\,\mathrm{Spec}\,}}C^\infty (H,k)\), which may also be described via the functor of points \( H(S) = H^{\pi _0(S)}. \) Then H represents the functor

$$\begin{aligned} (\mathrm{PerfSch}_k)&\rightarrow (\mathrm{Set}) \\ S&\mapsto {{\,\mathrm{Hom}\,}}(M_{1,S},M_{2,S}) \end{aligned}$$


The proof is identical to the proof of [54, Lemma 3.9], except for the last sentence. Here Rapoport and Richartz use \(W(R)_\mathbb {Q}^\sigma = \mathbb {Q}_p\), i.e. require \({{\,\mathrm{Spec}\,}}R\) to be connected. The same argument still works for us if we replace it by \(W(R)_\mathbb {Q}^\sigma = \mathbb {Q}_p^{\pi _0({{\,\mathrm{Spec}\,}}R)}\) (w.r.t. the p-adic topology), which is proven in Lemma A.2 and Lemma A.3 below.\(\square \)

For any \(\mathbb {F}_q\)-algebra R we have a canonical embedding \(\mathbb {F}_q^{\pi _0({{\,\mathrm{Spec}\,}}R)} \hookrightarrow R\) given as follows. For any \(f \in \mathbb {F}_q^{\pi _0({{\,\mathrm{Spec}\,}}R)}\) consider the clopen sets \(U_{f,x} \subset {{\,\mathrm{Spec}\,}}R\) given by the preimage of \(x \in \mathbb {F}_q\) w.r.t. the composition \({{\,\mathrm{Spec}\,}}R \rightarrow \pi _0({{\,\mathrm{Spec}\,}}R) {\mathop {\rightarrow }\limits ^{f}} \mathbb {F}_q\). Then there exists a unique idempotent \(e_{f,x} \in R\) such that \(U_{f,x} = D(e_{f,x})\). We define the image of f in R to be \(\sum _{x \in \mathbb {F}_q} x \cdot e_{f,x}\).

Lemma A.2

For any \(\mathbb {F}_q\)-algebra R one has \(\{r \in R \mid r^q = r\} = \mathbb {F}_q^{\pi _0({{\,\mathrm{Spec}\,}}R)}\).


The inclusion “\(\supseteq \)” is obvious. Thus let \(r \in R\) with \(r^q - r = 0\). Then \({{\,\mathrm{Spec}\,}}R = \coprod _{x \in \mathbb {F}_q} V(r-x)\), thus r defines an locally constant function

$$\begin{aligned} \varphi : {{\,\mathrm{Spec}\,}}R&\rightarrow \mathbb {F}_q \\ \mathfrak {p}&\mapsto r \mod \mathfrak {p}. \end{aligned}$$

Let \(f \in \mathbb {F}_q^{\pi _0({{\,\mathrm{Spec}\,}}R)}\) be the corresponding element. Then \(r-f\) is nilpotent, say \((r-f)^{q^n} = 0\). Now

$$\begin{aligned} r-f = r^{q^n} - f^{q^n} = (r-f)^{q^n} = 0. \end{aligned}$$

\(\square \)

Lemma A.3

Let R be a perfect ring of characteristic p and S be a profinite set. We have

$$\begin{aligned} W(R^S) = W(R)^S \end{aligned}$$

where we consider the p-adic topology on W(R).


Recall that W(R) is uniquely characterised by the property that it is torsion-free, p-adically complete such that \(W(R)/p = R\). As a direct consequence we obtain that for any directed system \((R_\lambda )\) of perfect rings \(W(\varinjlim R_\lambda )\) is the p-adic completion of \(\varinjlim W(R_\lambda )\). Now let \(S = \varprojlim S_\lambda \) with \(S_\lambda \) finite. We obtain

$$\begin{aligned} W(R^S)&= W(\varinjlim \, R^{S_\lambda }) \\&= (\varinjlim \, W(R^{S_\lambda }))^{\wedge \, p-ad} \\&= (\varinjlim \, W(R)^{S_\lambda })^{\wedge \, p-ad} \\&= {{\,\mathrm{Map}\,}}_\mathrm{loc.~const.}(S,W(R))^{\wedge \,p-ad} \\&= W(R)^S. \end{aligned}$$

\(\square \)

Appendix B: The Künneth formula for proétale torsors

The cohomology of compact support is normally only defined for schemes of finite type. We define it for a slightly larger class of schemes, as we also want to calculate it for pro-étale torsors over varieties.

Definition/Lemma B.1

Let \(f:P \rightarrow S\) be a morphism of schemes where S is noetherian and f factorises as \(P \xrightarrow {g} X \xrightarrow {h} S\) where h is locally of finite type and g is integral. We define the derived pushforward with compact support for étale sheaves on P by

$$\begin{aligned} \mathrm {R}f_! :=\mathrm {R}h_! \circ \mathrm {R}g_*\end{aligned}$$

This definition does not depend on the choice of factorisation above.


Let \(P \xrightarrow {g} X \xrightarrow {h} S\) and \(P \xrightarrow {g'} X' \xrightarrow {h'} S\) be two factorisations as above. If \(g'\) factorises as \(P \xrightarrow {g} X \xrightarrow {g''} X'\), then \(g''\) is finite and thus

$$\begin{aligned} \mathrm {R}h'_! \circ \mathrm {R}g'_*= \mathrm {R}h'_! \circ \mathrm {R}g''_*\circ \mathrm {R}g_*= \mathrm {R}h'_! \circ \mathrm {R}g''_! \circ \mathrm {R}g_*= \mathrm {R}h_! \circ R g_*\end{aligned}$$

In general, since

$$\begin{aligned} Rh_! = \varinjlim _{U \subset X \text { qc open}}\, Rh_{U !} \end{aligned}$$

where \(h_U\) is the composition of the open embedding \(U \hookrightarrow X\) with h, we may assume that h and \(h'\) are of finite type. Writing \(P = \varprojlim X_\lambda \), where \(X_\lambda \) is finite over X, we see that \(g'\) factors over some \(X_\lambda \) since \(X'\) is of finite presentation over S. Replacing X by \(X_\lambda \), we are in the situation discussed above. \(\square \)

In the case where \(S = {{\,\mathrm{Spec}\,}}k\), we may simply write \(\mathrm {R}\Gamma _c(X,-)\) instead of \(\mathrm {R}f_!\) and \(H_c^i(X,-)\) instead of \(\mathrm {R}^i f_!\).

Remark B.2

For special cases of f, the definition of \(\mathrm {R}f_!\) simplifies.

  1. (1)

    If \(f:X\rightarrow S={{\,\mathrm{Spec}\,}}k\) is locally of finite type, then this definition of \(\mathrm {R}\Gamma _c(X,-)\) coincides with Definition 2.2.

  2. (2)

    If X is proper, \(\mathrm {R}f_! = \mathrm {R}f_*\).

  3. (3)

    Writing \(P = \varprojlim X_\lambda \) with \(X_\lambda \xrightarrow {g_\lambda } X\) finite, assume that the sheaf \(\mathscr {L}\) over the étale site of P is defined as the pullback of a sheaf \(\mathscr {L}_\lambda \) over the étale site of \(X_\lambda \). By [61, 09YQ] we have \(\mathrm {R}f_! \mathscr {L}= \varinjlim \mathrm {R}f_{\lambda , !} \mathscr {L}_\lambda \) where \(f_\lambda = h \circ g_\lambda \). Thus the usual ad hoc definition of cohomology with compact support for infinite level Shimura varieties coincides with the definition above.

We fix a locally profinite group J with a compact open pro-p-subgroup \(K_0\) and denote by dh the Haar measure such that \(dh(K_0) = 1\). From now on we assume that \(f: P \rightarrow X\) is a proétale J-torsor and that \(\mathscr {L}\) is a smooth J-equivariant abelian sheaf on P such that p is invertible in \(\mathscr {L}\). The J-action defines an effective descent datum on \(\mathscr {L}\); let \(\mathscr {L}_X\) denote the corresponding sheaf on X. One obtains the following explicit description of the stalks of \(\mathrm {R}^0 f_!\mathscr {L}\).

Lemma B.3

Let \(\bar{x}\) be a geometric point of X.

  1. (1)

    At any geometric point \(\bar{x}\) of X,  the stalk of \(\mathrm {R}^0 f_! \mathscr {L}\) at \(\bar{x}\) is canonically isomorphic to \(C_c^\infty (f^{-1}(\bar{x}),\mathscr {L}_{X,\bar{x}})\). Moreover,  we have a canonical J-action on \(f_!\mathscr {L}\) which is given on stalks by the natural J-action on \(C_c^\infty (f^{-1}(\bar{x}),\mathscr {L}_{X,\bar{x}})\).

  2. (2)

    There exists a (noncanonical) morphism \(\int _f: \mathrm {R}^0 f_!\mathscr {L}\rightarrow \mathscr {L}_X,\) which is given on stalks by

    $$\begin{aligned} C_c^\infty (f^{-1}(\bar{x}),\mathscr {L}_{X,\bar{x}}) \rightarrow \mathscr {L}_{X,\bar{x}}, \varphi \mapsto \int _{f^{-1}(\bar{x})} \varphi dh. \end{aligned}$$

    In particular,  \(\int _f\) is J-equivariant and the definition only depends on the choice of dh.


For a compact open subgroup K denote \(X_K :=P/K\) and let \(P \xrightarrow {g_K} X_K \xrightarrow {f_K} X\) be the canonical factorisation of f and \(\mathscr {L}_K :=f_K^*\mathscr {L}_X\) the descent of \(\mathscr {L}\) to \(X_K\).

For \(K \subset K_0\) let \(g_{K,K_0}: X_{K} \rightarrow X_{K_0}\) be the canonical projection. Then

$$\begin{aligned} g_{K_0\,*} \mathscr {L}= \varinjlim _{K}\, g_{K,K_0\, *} \mathscr {L}_{K} = \varinjlim _{K}\, g_{K,K_0\,*}g_{K,K_0}^*\mathscr {L}_{K_0}. \end{aligned}$$

Since \(K_0/K\) is finite, the morphism \(g_{K,K_0}\) finite étale. Thus \(g_{K,K_0\, *} = g_{K,K_0\,!}\) is the left adjoint of \(g_{K,K_0}^*\). Hence the stalk at a geometric point \(\overline{y} \in X_{K_0}\) equals (see e.g. [61, Tag 0710])

$$\begin{aligned} (g_{K_0\,*} \mathscr {L})_{\bar{y}} = \varinjlim _{K} (g_{K,K_0\,*}g_{K,K_0}^*\mathscr {L}_{K_0})_{\bar{y}} = \varinjlim _K \bigoplus _{g_{K,K_0}^{-1}(\bar{y})} \mathscr {L}_{K_0,\bar{y}} = C_c^\infty (g_{K_0}^{-1}(\bar{y}),\mathscr {L}_{K_0,\bar{y}}). \end{aligned}$$

Since \(J/K_0\) is discrete, \(f_{K_0}\) is étale; thus by the same argument as above

$$\begin{aligned} (f_{K_0\, !} g_{K_0\,*}\mathscr {L})_{\bar{x}} = \bigoplus _{\bar{y}\in f_{K_0}^{-1}(\bar{x})} (g_{K_0\,*}\mathscr {L})_{\bar{y}} = C_c^\infty (f^{-1}(\bar{x}),\mathscr {L}_{X,\bar{x}}). \end{aligned}$$

Since \(f_!\) is functorial, the J-action on \(\mathscr {L}\) induces an J-action on \(f_!\mathscr {L}\). Tracing through the definitions, one easily checks that the action of J on \((f_{!} \mathscr {L})_{\bar{x}} = C_c^\infty (f^{-1}(\bar{x}),\mathscr {L}_{X,\bar{x}})\) is indeed the canonical action induced by the J-action of \(f^{-1}(\bar{x})\).

The morphism \(\int _f\) is defined as follows. Let \(\tau _{K/K_0} :=\frac{1}{[K_0:K]} \cdot {{\,\mathrm{Tr}\,}}:g_{K,K_0\,*} \mathscr {L}_K \rightarrow \mathscr {L}_{K_0}\). On stalks, this morphism is given by

$$\begin{aligned} \bigoplus _{\bar{z}\in g_{K,K_0}^{-1}(\bar{y})} \mathscr {L}_{K_0,\bar{y}} \rightarrow \mathscr {L}_{K_0,\bar{y}}, (f_{\bar{z}}) \mapsto \frac{1}{[K_0:K]} \cdot \sum _{\bar{z}\in g_{K,K_0}^{-1}(\bar{y})} f_{\bar{z}}, \end{aligned}$$

i.e. taking the average. Hence \(\tau :=\varinjlim \, \tau _{K,K_0}:g_{K_0\,*} \mathscr {L}\rightarrow \mathscr {L}_{K_0}\) is given on stalks by taking the integral \(\int _{K_0} dh\). We define \(\int _f\) as the concatenation

$$\begin{aligned} \mathrm {R}^0f_!\mathscr {L}\xrightarrow {f_{K_0\, !}(\tau )} f_{K_0\, !} \mathscr {L}_{K_0} \xrightarrow {{{\,\mathrm{Tr}\,}}} \mathscr {L}_X. \end{aligned}$$

By the above calculation it indeed coincides with the integral over \(f^{-1}(\bar{x})\) on stalks.    \(\square \)

Corollary B.4

\(\mathrm {R}^0 f_!\mathscr {L}\) satisfies property \((\mathcal {P})\) of [43, Def. 5.3], i.e. \((\mathrm {R}^0 f_!\mathscr {L})_{\bar{x}} \cong {{\,\mathrm{c-Ind}\,}}_1^J \mathscr {L}_{X,\bar{x}}\).

In this article, we will consider sheaves which have alongside the \(J = J_b(\mathbb {Q}_p)\)-action an action of the Weil group \(W = W_E\) of the p-adic completion of the Shimura field. We remark that the above construction still works if we consider W-equivariant sheaves for some profinite group W acting on the underlying schemes. For simplicity we assume that \(\mathscr {L}\) is a (W-equivariant) sheaf of \(\mathbb {Z}/l^r\mathbb {Z}\)-modules for a prime \(l \not = p\). Let \(\mathcal {H}_r = C_c^\infty (J_b(\mathbb {Q}_p),\mathbb {Z}/l^r\mathbb {Z})\) and denote by \(\Lambda \) the module \(\mathbb {Z}/l^r\mathbb {Z}\) as trivial \(\mathcal {H}_r\)-representation.

The following statements are a formal consequence of Corollary B.4, and properties of \(R\Gamma _c\) (cf. [49, § 7.2][43, § 5.3])

Proposition B.5

(Cf. [49, Prop. 7.2.2], [43, Thm. 5.11]) \( \mathrm {R}\Gamma _c(X,f_!\mathscr {L}_X) = \Lambda \otimes ^L_{\mathcal {H}_r} \mathrm {R}\Gamma _c(P,\mathscr {L})\)

Theorem B.6

(Cf. [49, Thm. 7.2.3], [43, Thm. 5.13]) Assume that we may write \(P = P_1 \times P_2\) where \(P_1\) and \(P_2\) are J-equivariant and locally of finite presentation up to Galois cover and assume that

$$\begin{aligned} \mathscr {L}= \mathscr {E}_1 \boxtimes \mathcal {E}_2 \end{aligned}$$

where \(\mathscr {E}_i\) is a smooth J-equivariant \(\mathbb {Z}/l^r\mathbb {Z}\)-sheaf on \(P_i\) with continuous W-action. Then

$$\begin{aligned} \mathrm {R}\Gamma _c(X, \mathcal {L}_X) = \mathrm {R}\Gamma _c(P_1,\mathscr {E}_1) \otimes ^L_{\mathcal {H}_r} \mathrm {R}\Gamma _c(P_2,\mathscr {E}_2) \end{aligned}$$

In particular, in the case where all the sheaves are constant étale sheaves associated to \(\mathbb {Z}/l^r\mathbb {Z}\), we obtain the following result.

Corollary B.7

(cf. [49, Cor. 7.2.5], [43, Thm. 5.14]) We have a spectral sequence

$$\begin{aligned} E_2^{p,q} = \bigoplus _{s+t = q} {{\,\mathrm{Tor}\,}}_{\mathcal {H}_r}^p(H^s(P_1,\mathbb {Z}/l^r\mathbb {Z}), H^t(P_2,\mathbb {Z}/l^r\mathbb {Z})) \Rightarrow H^{p+q}(X,\mathbb {Z}/l^r\mathbb {Z}). \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamacher, P., Kim, W. l-Adic étale cohomology of Shimura varieties of Hodge type with non-trivial coefficients. Math. Ann. 375, 973–1044 (2019). https://doi.org/10.1007/s00208-019-01815-6

Download citation