Markov spectra for modular billiards

Abstract

The connection between Markov’s theory of minima of indefinite binary quadratic forms and hyperbolic geodesics is well-known. We introduce some new analogues of the Markov spectrum defined in terms of modular billiards and consider the problem of characterizing that part of the spectrum below the lowest limit point.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Aigner, M.: Markov’s Theorem and 100 Years of the Uniqueness Conjecture. A Mathematical Journey from Irrational Numbers to Perfect Matchings. Springer, Cham (2013)

    Google Scholar 

  2. 2.

    Artin, E.: Ein mechanisches System mit quasiergodischen Bahnen. Hamb. Math. Abh. 3, 170–177 (1924)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Beardon, A.F.: The Geometry of Discrete Groups. Graduate Texts in Mathematics, vol. 91. Springer, New York (1983)

    Google Scholar 

  4. 4.

    Berstel, J., Lauve, A., Reutenauer, C., Saliola, F.: Combinatorics on Words. Christoffel Words and Repetitions in Words. CRM Monograph Series, vol. 27. AMS, Providence (2009)

    Google Scholar 

  5. 5.

    Bombieri, Enrico: Continued fractions and the Markoff tree. Expos. Math. 25(3), 187–213 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Cassels, J.W.S.: An Introduction to Diophantine Approximation. Cambridge Tracts in Mathematics and Mathematical Physics, No. 45. Cambridge University Press, New York (1957)

    Google Scholar 

  7. 7.

    Cohn, H.: Approach to Markoff’s minimal forms through modular functions. Ann. Math. (2) 61, 1–12 (1955)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Cohn, H.: Markoff geodesics in matrix theory. In: Number Theory with an Emphasis on the Markoff Spectrum (Provo, UT, 1991), Lecture Notes in Pure and Applied Mathematics, vol. 147, pp. 69–82. Dekker, New York (1993)

  9. 9.

    Cusick, T.W., Flahive, M.E.: The Markoff and Lagrange Spectra. Mathematical Surveys and Monographs, vol. 30. American Mathematical Society, Providence (1989)

    Google Scholar 

  10. 10.

    Dickson, L.E.: Modern Elementary Theory of Numbers. University of Chicago Press, Chicago (1939)

    Google Scholar 

  11. 11.

    Dickson, L.E.: Studies in the Theory of Numbers. Chicago University Press, Chicago (1930)

    Google Scholar 

  12. 12.

    Ford, L.R.: A geometrical proof of a theorem of Hurwitz. Proc. Edinb. Math. Soc. 35, 59–65 (1917)

    Article  MATH  Google Scholar 

  13. 13.

    Freiman, G.A.: Diofantovy priblizheniya i geometriya chisel (zadacha Markova). (Russian) [Diophantine approximations and the geometry of numbers (Markov’s problem)] Kalinin. Gosudarstv. Univ., Kalinin (1975)

  14. 14.

    Frobenius, G.: Über die Markoffschen Zahlen, Preuss. Akad. Wiss. Sitzungberichte (1913) 458–487 (also in: G. Frobenius, Gesammelte Abhandlungen, Bd. 3, Springer, Berlin, Heidelberg, New York, 1968, pp. 598–627)

  15. 15.

    Hall Jr., M.: On the sum and product of continued fractions. Ann. Math. (2) 48, 966–993 (1947)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Hall Jr., M.: The Markoff spectrum. Acta Arith. 18, 387–399 (1971)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Haas, A., Series, C.: The Hurwitz constant and Diophantine approximation on Hecke groups. J. Lond. Math. Soc. (2) 34(2), 219234 (1986)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Haas, A.: Diophantine approximation on hyperbolic Riemann surfaces. Acta Math. 156(1–2), 3382 (1986)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Lehner, J., Sheingorn, M.: Simple closed geodesics on \(H^+/\Gamma (3)\) arise from the Markov spectrum. Bull. Am. Math. Soc. (N.S.) 11(2), 359362 (1984)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Malyshev, A.V.: Markov and Lagrange spectra [Survey of the literature]. Zap. Nauch. Sem. Lenin. Otd. Math. Inst. V.A. Steklova AN SSSR 67, 5–38 (1977). (English translation in J. Soviet Math. 16 (1981) 767–788)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Markoff, A.: Sur les formes quadratiques binaires indéfinies. Math. Ann. 15, 381–409 (1879)

    Article  MATH  Google Scholar 

  22. 22.

    Markoff, A.: Sur les formes quadratiques binaires indéfinies. Math. Ann. 17, 379–399 (1880)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Sarnak, P.: Reciprocal geodesics. In: Analytic Number Theory, pp. 217–237, Clay Mathematics Proceedings, vol. 7, American Mathematical Society, Providence, RI (2007)

  24. 24.

    Schur, I.: Zur Theorie der indefiniten binären quadratischen Formen, Sitzungberichte der Preussischen Akademie Wiss. 212–231 (1913)

Download references

Acknowledgements

The second author thanks Alex Kontorovich for some enlightening discussions on the topics of this paper. The authors thank the referee for several constructive comments that have improved the exposition of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nickolas Andersen.

Additional information

In memory of Harvey Cohn (1923–2014)

Supported by NSF Grant DMS 1701638.

Communicated by Kannan Soundararajan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andersen, N., Duke, W. Markov spectra for modular billiards. Math. Ann. 373, 1151–1175 (2019). https://doi.org/10.1007/s00208-018-1781-x

Download citation