Skip to main content

Advertisement

Log in

Attainability of the best Sobolev constant in a ball

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The best constant in the Sobolev inequality in the whole space is attained by the Aubin–Talenti function; however, this does not happen in bounded domains because of the break down of the dilation invariance. In this paper, we investigate a new scale invariant form of the Sobolev inequality in a ball and show that its best constant is attained by functions of the Aubin–Talenti type. Generalization to the Caffarelli–Kohn–Nirenberg inequality in a ball is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi, do Ó, J.M., Tintarev, K.: Cocompactness and minimizers for inequalities of Hardy-Sobolev type involving N-Laplacian. NoDEA Nonlinear Differ. Equ. Appl. 17, 467–477 (2010)

  2. Alvino, A.: Sulla diseguaglianza di Sobolev in spazi di Lorentz. Boll. Un. Mat. Ital. A 14(5), 148–156 (1977)

    MathSciNet  MATH  Google Scholar 

  3. Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)

    Article  MATH  Google Scholar 

  4. Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compositio Math. 53, 259–275 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Cassani, D., Ruf, B., Tarsi, C.: Group invariance and pohozaev identity in Moser-type inequalities. Commun. Contemp. Math. 15, 1250054 (2013). (20 pages)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cassani, D., Ruf, B., Tarsi, C.: Optimal Sobolev type inequalities in Lorentz spaces. Potential Anal. 39, 265–285 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cassani, D., Sani, F., Tarsi, C.: Equivalent Moser type inequalities in \({\mathbb{R}}^2\) and the zero mass case. J. Funct. Anal. 267, 4236–4263 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cianchi, A.: A sharp embedding theorem for Orlicz-Sobolev spaces. Indiana Univ. Math. J. 45, 39–65 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Costa, D., Tintalev, C.: Concentration profiles for the Trudinger-Moser functional are shaped like toy pyramids. J. Funct. Anal. 266, 676–692 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Davies, E.B.: A review of Hardy inequalities. Oper. Theory Adv. Appl. 110, 55–67 (1999). (Birkhäuser, Basel)

    MathSciNet  MATH  Google Scholar 

  11. Federer, H., Fleming, W.: Normal and integral currents. Ann. Math. 72(2), 458–520 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  12. Horiuchi, T., Kumlin, P.: On the Caffarelli–Kohn–Nirenberg type inequalities involving critical and supercritical weights. Kyoto J. Math. 52, 661–742 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ioku, N., Ishiwata, M.: A scale Invariant form of a critical Hardy inequality. Int. Math. Res. Not. 18, 8830–8846 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ioku, N., Ishiwata, M.: A Note on the scale invariant structure of critical Hardy inequalities. Geometric properties for parabolic and elliptic PDE’s. Springer Proc. Math. Stat. 176, 97–120 (2016)

    Article  MATH  Google Scholar 

  15. Kesavan, S.: Symmetrization & Applications, Series in Analysis, vol. 3. World Scientific Publishing Co Pte. Ltd., Hackensack (2006)

    Book  MATH  Google Scholar 

  16. Maz’ya, V.G.: Classes of domains and imbedding theorems for function spaces. Soviet Math. Dokl. 1, 882–885 (1960)

    MathSciNet  MATH  Google Scholar 

  17. Opic, B., Kufner, A.: Hardy-Type Inequalities, Pitman Research Notes in Mathematics Series 219. Longman Scientific & Technical, Harlow (1990)

    MATH  Google Scholar 

  18. Sano, M., Takahashi, F.: Scale invariance structures of the critical and the subcritical Hardy inequalities and their improvements. Calc. Var. Partial Differ. Equ. 56, 69 (2017). (no. 3, Art. 69, 14 pp)

    Article  MathSciNet  MATH  Google Scholar 

  19. Suyari, H.: Fundamental Mathematics for Complex Systems. Makino shoten, Tokyo (2010) (in Japanese)

  20. Takahashi, F.: A simple proof of Hardy’s inequality in a limiting case. Arch. Math. 104, 77–82 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Statist. Phys. 52, 479–487 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tsallis, C.: Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World. Springer, NewYork (2009)

    MATH  Google Scholar 

  24. Willem, M.: Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston Inc, Boston (1996)

    Google Scholar 

Download references

Acknowledgements

This work was partially funded by JSPS KAKENHI # 18K13441.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norisuke Ioku.

Additional information

Communicated by Y. Giga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ioku, N. Attainability of the best Sobolev constant in a ball. Math. Ann. 375, 1–16 (2019). https://doi.org/10.1007/s00208-018-1776-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1776-7

Mathematics Subject Classification

Navigation