Alber, Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications. In: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Lecture Notes in Pure and Appl. Math., vol. 178, pp. 15–50. Dekker, New York (1996)
Alber, Y.I.: Generalized projections, decompositions, and the Pythagorean-type theorem in Banach spaces. Appl. Math. Lett. 11, 115–121 (1998). https://doi.org/10.1016/S0893-9659(98)00112-8
MathSciNet
Article
MATH
Google Scholar
Azzam, J., Schul, R.: An analyst’s traveling salesman theorem for sets of dimension larger than one. Math. Ann. 370, 1389–1476 (2018). https://doi.org/10.1007/s00208-017-1609-0. (Available at arXiv:1609.02892)
MathSciNet
Article
MATH
Google Scholar
Azzam, J., Tolsa, X.: Characterization of \(n\)-rectifiability in terms of Jones’ square function: Part II. Geom. Funct. Anal. 25, 1371–1412 (2015). https://doi.org/10.1007/s00039-015-0334-7
MathSciNet
Article
MATH
Google Scholar
Badger, M., Schul, R.: Multiscale analysis of 1-rectifiable measures: necessary conditions. Math. Ann. 361, 1055–1072 (2015). https://doi.org/10.1007/s00208-014-1104-9
MathSciNet
Article
MATH
Google Scholar
Badger, M., Schul, R.: Multiscale analysis of 1-rectifiable measures II: characterizations. Anal. Geom. Metr. Spaces 5, 1–39 (2017). https://doi.org/10.1515/agms-2017-0001. Available at arXiv:1602.03823
MathSciNet
Article
MATH
Google Scholar
Bishop, C.J., Peres, Y.: Fractals in Probability and Analysis. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781316460238. (English)
Book
MATH
Google Scholar
Clarkson, J.A.: Uniformly convex spaces. Trans. Am. Math. Soc. 40, 396–414 (1936). https://doi.org/10.2307/1989630
MathSciNet
Article
MATH
Google Scholar
David, G., Semmes, S.: Singular integrals and rectifiable sets in \(\mathbb{R}^n\): beyond Lipschitz graphs, Astérisque, vol. 191. Sociètè Mathèmatique de France, Paris (1991)
David, G., Semmes, S.: Analysis of and on Uniformly Rectifiable Sets, Mathematical Surveys and Monographs, vol. 38. American Mathematical Society, Providence (1993). https://doi.org/10.1090/surv/038
Book
MATH
Google Scholar
David, G., Toro, T.: Reifenberg parameterizations for sets with holes. Mem. Am. Math. Soc. 215, vi+102 (2012). https://doi.org/10.1090/S0065-9266-2011-00629-5
MathSciNet
MATH
Google Scholar
David, G.C., Schul, R.: The analyst’s traveling salesman theorem in graph inverse limits. Ann. Acad. Sci. Fenn. Math. 42, 649–692 (2017). https://doi.org/10.5186/aasfm.2017.4260
MathSciNet
Article
MATH
Google Scholar
Edelen, N.S., Naber, A., Valtorta, D.: Quantitative Reifenberg theorem for measures. arXiv:1612.08052
Federer, H.: Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer, New York (1969)
Google Scholar
Ferrari, F., Franchi, B., Pajot, H.: The geometric traveling salesman problem in the Heisenberg group. Rev. Mat. Iberoam. 23, 437–480 (2007). https://doi.org/10.4171/RMI/502
MathSciNet
Article
MATH
Google Scholar
Garnett, J., Killip, R., Schul, R.: A doubling measure on \(\mathbb{R}^d\) can charge a rectifiable curve. Proc. Am. Math. Soc. 138, 1673–1679 (2010)
Article
MATH
Google Scholar
Hahlomaa, I.: Menger curvature and rectifiability in metric spaces. Adv. Math. 219, 1894–1915 (2008). https://doi.org/10.1016/j.aim.2008.07.013
MathSciNet
Article
MATH
Google Scholar
Hanner, O.: On the uniform convexity of \(L^p\) and \(l^p\). Ark. Mat. 3, 239–244 (1956). https://doi.org/10.1007/BF02589410
MathSciNet
Article
MATH
Google Scholar
Hudzik, H., Wang, Y., Sha, R.: Orthogonally complemented subspaces in Banach spaces. Numer. Funct. Anal. Optim. 29, 779–790 (2008). https://doi.org/10.1080/01630560802279231
MathSciNet
Article
MATH
Google Scholar
Jones, P.W.: Rectifiable sets and the traveling salesman problem. Invent. Math. 102, 1–15 (1990). https://doi.org/10.1007/BF01233418
MathSciNet
Article
MATH
Google Scholar
Li, S., Schul, R.: The traveling salesman problem in the Heisenberg group: upper bounding curvature. Trans. Am. Math. Soc. 368, 4585–4620 (2016). https://doi.org/10.1090/tran/6501
MathSciNet
Article
MATH
Google Scholar
Li, S., Schul, R.: An upper bound for the length of a traveling salesman path in the Heisenberg group. Rev. Mat. Iberoam. 32, 391–417 (2016). https://doi.org/10.4171/RMI/889
MathSciNet
Article
MATH
Google Scholar
Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. I. Springer, Berlin (1977). (Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92)
Book
MATH
Google Scholar
Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97. Springer, Berlin (1979). (Function spaces)
Google Scholar
Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces, Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995). https://doi.org/10.1017/CBO9780511623813. (Fractals and rectifiability)
Book
Google Scholar
Miśkiewicz, M.: Discrete Reifenberg-type theorem. Annales Academiae Scientiarum Fennicae. Mathematica 43, 3–19 (2018). https://doi.org/10.5186/aasfm.2018.4301
MathSciNet
Article
MATH
Google Scholar
Naber, A., Valtorta, D.: Rectifiable-Reifenberg and the regularity of stationary and minimizing harmonic maps. Ann. Math. (2) 185, 131–227 (2017). https://doi.org/10.4007/annals.2017.185.1.3
MathSciNet
Article
MATH
Google Scholar
Nordlander, G.: The modulus of convexity in normed linear spaces. Ark. Mat. 4(1960), 15–17 (1960). https://doi.org/10.1007/BF02591317
MathSciNet
Article
MATH
Google Scholar
Okikiolu, K.: Characterization of subsets of rectifiable curves in \({ R }^n\). J. Lond. Math. Soc. (2) 46, 336–348 (1992). https://doi.org/10.1112/jlms/s2-46.2.336
MathSciNet
Article
MATH
Google Scholar
Parthasarathy, K.R.: Probability Measures on Metric Spaces. AMS Chelsea Publishing, Providence (2005). https://doi.org/10.1090/chel/352. (Reprint of the 1967 original)
MATH
Google Scholar
Randrianantoanina, B.: Norm-one projections in Banach spaces. Taiwan. J. Math. 5, 35–95 (2001). https://doi.org/10.11650/twjm/1500574888. (International Conference on Mathematical Analysis and its Applications (Kaohsiung, 2000))
MathSciNet
Article
MATH
Google Scholar
Reed, M., Simon, B.: I: Functional Analysis, Methods of Modern Mathematical Physics. Elsevier Science (1981). Available at https://books.google.com/books?id=rpFTTjxOYpsC
Reifenberg, E.R.: Solution of the plateau problem for \(m\)-dimensional surfaces of varying topological type. Acta Math. 104, 1–92 (1960). Available at http://link.springer.com/article/10.1007
Schul, R.: Analyst’s traveling salesman theorems. A survey. In: In the Tradition of Ahlfors-Bers. IV, Contemp. Math., vol. 432, pp. 209–220. Amer. Math. Soc., Providence (2007). https://doi.org/10.1090/conm/432/08310
Schul, R.: Subsets of rectifiable curves in Hilbert space—the analyst’s TSP. J. Anal. Math. 103, 331–375 (2007). https://doi.org/10.1007/s11854-008-0011-y
MathSciNet
Article
MATH
Google Scholar
Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3. Australian National University, Centre for Mathematical Analysis, Canberra (1983)
Tolsa, X.: Rectifiability of measures and the \(\beta _p\) coefficients. arXiv:1708.02304 (preprint)
Tolsa, X.: Characterization of \(n\)-rectifiability in terms of Jones’ square function: part I. Calc. Var. Partial Diff. Equ. 54, 3643–3665 (2015). https://doi.org/10.1007/s00526-015-0917-z
MathSciNet
Article
MATH
Google Scholar
Toro, T.: Geometric conditions and existence of bi-Lipschitz parameterizations. Duke Math. J. 77, 193–227 (1995). https://doi.org/10.1215/S0012-7094-95-07708-4
MathSciNet
Article
MATH
Google Scholar