Skip to main content
Log in

\(L^p\)-independence of spectral radius for generalized Feynman–Kac semigroups

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Under mild conditions on measures used in the perturbation, we establish the \(L^p\)-independence of spectral radius for generalized Feynman–Kac semigroups without assuming the irreducibility and the boundedness of the function appeared in the continuous additive functionals locally of zero energy in the framework of symmetric Markov processes. These results are obtained by using the gaugeability approach developed by the first named author as well as the recent progress on the irreducible decomposition for Markov processes proved by the third author and on the analytic characterizations of gaugeability for generalized Feynman–Kac functionals developed by the second and third authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Simon, B.: Brownian motion and Harnack inequality for Schrödinger operators. Commun. Pure Appl. Math. 35(2), 209–273 (1982)

    Article  MATH  Google Scholar 

  2. Chen, Z.-Q.: Gaugeability and conditional gaugeability. Trans. Am. Math. Soc. 354(11), 4639–4679 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, Z.-Q.: Analytic characterization of conditional gaugeability for non-local Feynman–Kac transforms. J. Funct. Anal. 202(1), 226–246 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Z.-Q.: Uniform integrability of exponential martingales and spectral bounds of non-local Feynman–Kac semigroups. In: Zhang, T., Zhou, X. (eds.) Stochastic Analysis and Applications to Finance, Essays in Honor of Jia-an Yan, pp. 55–75. (2012)

  5. Chen, Z.-Q.: \(L^p\)-independence of spectral bounds of generalized non-local Feynman–Kac semigroups. J. Funct. Anal. 226(6), 4120–4139 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, Z.-Q., Fitzsimmons, P.J., Kuwae, K., Zhang, T.-S.: Perturbation of symmetric Markov processes. Probab. Theory Relat. Fields 140(1–2), 239–275 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Chen, Z.-Q., Fitzsimmons, P.J., Kuwae, K., Zhang, T.-S.: On general perturbations of symmetric Markov processes. J. Math. Pures et Appliquées 92(4), 363–374 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Z.-Q., Fukushima, M.: Symmetric Markov Processes, Time Change, and Boundary Theory. London Mathematical Society Monographs Series, vol. 35. Princeton University Press, Princeton (2012)

    MATH  Google Scholar 

  9. Chen, Z.-Q., Kim, P., Kumagai, T.: Global heat kernel estimates for symmetric jump processes. Trans. Am. Math. Soc. 363(9), 5021–5055 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Z.-Q., Kim, P., Kumagai, T.: Corrigendum to “Global heat kernel estimates for symmetric jump processes” [MR2806700]. Trans. Am. Math. Soc. 367(10), 7515 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Z.-Q., Kim, P., Song, R.: Global heat kernel estimates for relativistic stable processes in exterior open sets. J. Funct. Anal. 263(2), 448–475 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Z.-Q., Kim, P., Song, R.: Global heat kernel estimates for relativistic stable processes in half-space-like open sets. Potential Anal. 36(2), 235–261 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, Z.-Q., Kumagai, T.: Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Relat. Fields 140(1–2), 277–317 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Chen, Z.-Q., Kuwae, K.: On doubly Feller property. Osaka J. Math. 46(4), 909–930 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Chen, Z.-Q., Song, R.: Drift transforms and Green function estimates for discontinuous processes. J. Funct. Anal. 201(1), 262–281 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, Z.-Q., Zhang, T.-S.: Girsanov and Feynman–Kac type transformations for symmetric Markov processes. Ann. Inst. H. Poincaré Probab. Stat. 38(4), 475–505 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chung, K.L., Zhao, Z.X.: From Brownian Motion to Schrödinger’s Equation. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  18. Dembo, A., Zeitouni, O.: Large deviations techniques and applications. Corrected Reprint of the Second (1998) Edition. Stochastic Modelling and Applied Probability, vol. 38. Springer, Berlin (2010)

  19. De Leva, G., Kim, D., Kuwae, K.: \(L^p\)-independence of spectral bounds of Feynman–Kac semigroups by continuous additive functionals. J. Funct. Anal. 259(3), 690–730 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Engel, K.-J., Nagel, R.: One-parameter semigroups for linear evolution equations. Springer, Berlin (2000)

    MATH  Google Scholar 

  21. Fuglede, B.: The quasi topology associated with a countably subadditive set function. Ann. Inst. Fourier (Grenoble) 21(1), 123–169 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, Second Revised and Extended Edition. de Gruyter Studies in Mathematics, vol. 19. Walter de Gruyter & Co., Berlin (2011)

    MATH  Google Scholar 

  23. Hempel, R., Voigt, J.: The spectrum of a Schrödinger operator in \(L^p({ R}^{\nu })\) is \(p\)-independent. Commun. Math. Phys. 104(2), 243–250 (1986)

    Article  MATH  Google Scholar 

  24. Hempel, R., Voigt, J.: On the \(L^p\)-spectrum of Schrödinger operators. J. Math. Anal. Appl. 121(1), 138–159 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. Herbst, I.W., Sloan, A.D.: Perturbation of translation invariant positivity preserving semigroups on \(L^2(\mathbb{R}^{n})\). Trans. Am. Math. Soc. 236, 325–360 (1978)

    MATH  MathSciNet  Google Scholar 

  26. Jiang, R., Li, H., Zhang, H.: Heat kernel bounds on metric measure spaces and some applications. Potential Anal. 44(3), 601–627 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kim, D., Kurniawaty, M., Kuwae, K.: A refinement of analytic characterizations of gaugeability for generalized Feynman–Kac functionals. Ill. J. Math. 59(3), 717–771 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kim, D., Kuwae, K.: Analytic characterizations of gaugeability for generalized Feynman–Kac functionals. Trans. Am. Math. Soc. 369(7), 4545–4596 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kim, D., Kuwae, K.: General analytic characterization of gaugeability for Feynman–Kac functionals. Math. Ann. 370(1–2), 1–37 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kim, D., Kuwae, K.: Stability of estimates for fundamental solutions under Feynman–Kac perturbations for symmetric Markov processes, (2016). Preprint

  31. Kim, D., Kuwae, K., Tawara, Y.: Large deviation principle for generalized Feynman–Kac functionals and its applications. Tohoku Math. J. 68(2), 161–197 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kuwae, K.: Functional calculus for Dirichlet forms. Osaka J. Math. 35(3), 683–715 (1998)

    MathSciNet  MATH  Google Scholar 

  33. Kuwae, K.: Stochastic calculus over symmetric Markov processes without time reversal. Ann. Probab. 38(4), 1532–1569 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kuwae, K.: Errata: Stochastic calculus over symmetric Markov processes without time reversal. Ann. Probab. 38(4), 1532–1569 (2010). Ann. Probab. 40(6), 2705–2706 (2012)

  35. Kuwae, K.: Stochastic calculus over symmetric Markov processes with time reversal. Nagoya Math. J. 220(4), 91–148 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kuwae, K.: Irreducible decomposition for Markov processes, preprint (2017)

  37. Kuwae, K., Takahashi, M.: Kato class functions of Markov processes under ultracontractivity. Potential theory in Matsue, 193–202, Adv. Stud. Pure Math. 44, Math. Soc. Japan, Tokyo (2006)

  38. Kuwae, K., Takahashi, M.: Kato class measures of symmetric Markov processes under heat kernel estimates. J. Funct. Anal. 250(1), 86–113 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ma, Z.-M., Röckner, M.: Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  40. Simon, B.: Brownian motion, \(L^p\)-properties of Schrödinger operators and the localization of binding. J. Funct. Anal. 35(2), 215–229 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  41. Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. 7(3), 447–526 (1982)

    Article  MATH  Google Scholar 

  42. Stollmann, P., Voigt, J.: Perturbation of Dirichlet forms by measures. Potential Anal. 5(2), 109–138 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sturm, K-Th: Schödinger semigroups on manifolds. J. Funct. Anal. 118(2), 309–350 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sturm, K-Th: On the \(L^p\)-spectrum of uniformly elliptic operators on Riemannian manifolds. J. Funct. Anal. 118(2), 442–453 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  45. Takeda, M.: \(L^p\)-independence of the spectral radius of symmetric Markov semigroups. Stochastic processes, physics and geometry: new interplays, II (Leipzig, 1999), 613–623, CMS Conf. Proc. 29, Amer. Math. Soc., Providence, RI (2000)

  46. Takeda, M.: Conditional gaugeability and subcriticality of generalized Schrödinger operators. J. Funct. Anal. 191(2), 343–376 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Takeda, M.: \(L^p\)-independence of spectral bounds of Schrödinger type semigroups. J. Funct. Anal. 252(2), 550–565 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Takeda, M.: \(L^p\)-independence of growth bounds of Feynman–Kac semigroups. Surveys in stochastic processes, 201–226, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich (2011)

  49. Takeda, M.: A large deviation principle for symmetric Markov processes with Feynman–Kac functional. J. Theor. Probab. 24(4), 1097–1129 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Takeda, M., Tawara, Y.: \(L^p\)-independence of spectral bounds of non-local Feynman–Kac semigroups. Forum Math. 21(6), 1067–1080 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Tawara, Y.: \(L^p\)-independence of spectral bounds of Schrödinger type operators with non-local potentials. J. Math. Soc. Jpn. 62(3), 767–788 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Terkelsen, F.: Some minimax theorems. Math. Scand. 31, 405–413 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhao, Z.: Subcriticality and gaugeability of the Schrödinger operator. Trans. Am. Math. Soc. 334(1), 75–96 (1992)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Kuwae.

Additional information

Communicated by Y. Giga.

The research of the first named author is partially supported by Simons Foundation Grant 520542 and a Victor Klee Faculty Fellowship at UW. The second named author was partially supported by a Grant-in-Aid for Scientific Research (C) No. 17K05304 from Japan Society for the Promotion of Science. The third named author was partially supported by a Grant-in-Aid for Scientific Research (B) No. 17H02846 from Japan Society for the Promotion of Science.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, ZQ., Kim, D. & Kuwae, K. \(L^p\)-independence of spectral radius for generalized Feynman–Kac semigroups. Math. Ann. 374, 601–652 (2019). https://doi.org/10.1007/s00208-018-1746-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1746-0

Mathematics Subject Classification

Navigation