Skip to main content
Log in

A non-abelian conjecture of Tate–Shafarevich type for hyperbolic curves

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let X denote a hyperbolic curve over \(\mathbb {Q}\) and let p denote a prime of good reduction. The third author’s approach to integral points, introduced in Kim (Invent Math 161:629–656, 2005; Publ Res Inst Math Sci 45:89–133, 2009), endows \(X({\mathbb {Z}_p})\) with a nested sequence of subsets \(X({\mathbb {Z}_p})_n\) which contain \(X(\mathbb {Z})\). These sets have been computed in a range of special cases (Balakrishnan et al., J Am Math Soc 24:281–291, 2011; Dan-Cohen and Wewers, Proc Lond Math Soc 110:133–171, 2015; Dan-Cohen and Wewers, Int Math Res Not IMRN 17:5291–5354, 2016; Kim, J Am Math Soc 23:725–747, 2010); there is good reason to believe them to be practically computable in general. In 2012, the third author announced the conjecture that for n sufficiently large, \(X(\mathbb {Z}) = X({\mathbb {Z}_p})_n\). This conjecture may be seen as a sort of compromise between the abelian confines of the BSD conjecture and the profinite world of the Grothendieck section conjecture. After stating the conjecture and explaining its relationship to these other conjectures, we explore a range of special cases in which the new conjecture can be verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Technically speaking, the pullback \(j_p^*\) appearing here may be thought of as a pullback of locally analytic functions on associated p-adic analytic spaces.

  2. Technically speaking, while the map \({\text {loc}}_v\) appearing in the diagram is a morphism of \({\mathbb {Q}_p}\)-schemes, the vertical maps j, \(j_v\) are just maps of sets into the sets of \({\mathbb {Q}_p}\)-points of the varieties below.

  3. To avoid misunderstanding, we remind the reader that \(\mathcal {E}\) refers to the compact curve, so that \(\mathcal {E}(\mathbb {Z})=E(\mathbb {Q})\), where E is the generic fiber of \(\mathcal {E}\). That is, what we write as \(\mathcal {E}(\mathbb {Z})\) is what is usually called the rational points of E, while our \(\mathcal {X}(\mathbb {Z})\) is sometimes confusingly referred to as the integral points of E.

References

  1. Balakrishnan, J.: Data page. https://github.com/jbalakrishnan/nonabelian_conjecture. Accessed 01 June 2018

  2. Balakrishnan, J.S.: Iterated coleman integration for hyperelliptic curves. In: Howe, E.W., Kedlaya, K.S. (eds.) ANTS-X: Proceedings of the Tenth Algorithmic Number Theory Symposium, Open Book Series, vol. 1. Mathematical Sciences Publishers (2013)

  3. Balakrishnan, J.S., Besser, A.: Coleman-Gross height pairings and the \(p\)-adic sigma function. J. Reine Angew. Math. 698, 89–104 (2015). https://doi.org/10.1515/crelle-2012-0095

    Article  MathSciNet  MATH  Google Scholar 

  4. Balakrishnan, J.S., Bradshaw, R.W., Kedlaya, K.S.: Explicit Coleman integration for hyperelliptic curves. In: Algorithmic Number Theory, Lecture Notes in Computer Science, vol. 6197, pp. 16–31. Springer, Berlin (2010)

    Google Scholar 

  5. Balakrishnan, J.S., Besser, A., Müller, J.S.: Quadratic Chabauty: \(p\)-adic height pairings and integral points on hyperelliptic curves. J. Reine Angew. Math. 720, 51–79 (2016). https://doi.org/10.1515/crelle-2014-0048

    Article  MathSciNet  MATH  Google Scholar 

  6. Besser, A., de Jeu, R.: \({\rm Li}^{(p)}\)-service? An algorithm for computing \(p\)-adic polylogarithms. Math. Comput. 77(262), 1105–1134 (2008)

    Article  MathSciNet  Google Scholar 

  7. Spencer B., Kazuya, K.: \(L\)-functions and Tamagawa numbers of motives. In: The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, pp. 333–400. Birkhäuser Boston, Boston (1990)

  8. Balakrishnan, J.S., Kedlaya, K.S., Kim, M.: Appendix and erratum to Massey products for elliptic curves of rank 1 [mr2629986]. J. Am. Math. Soc. 24(1), 281–291 (2011)

    Article  Google Scholar 

  9. Baker, M.H., Ribet, K.A.: Galois theory and torsion points on curves. J. Théor. Nombres Bordx. 15(1), 11–32 (2003). (Les XXIIèmes Journées Arithmetiques (Lille, 2001))

    Article  MathSciNet  Google Scholar 

  10. Coates, J., Kim, M.: Selmer varieties for curves with CM Jacobians. Kyoto J. Math. 50(4), 827–852 (2010)

    Article  MathSciNet  Google Scholar 

  11. Coleman, R.F.: Dilogarithms, regulators and \(p\)-adic \(L\)-functions. Invent. Math. 69(2), 171–208 (1982)

    Article  MathSciNet  Google Scholar 

  12. Coleman, R.F., Tamagawa, A., Tzermias, P.: The cuspidal torsion packet on the Fermat curve. J. Reine Angew. Math. 496, 73–81 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Dan-Cohen, I.: Mixed tate motives and the unit equation II. Preprint. arXiv:1510.01362

  14. Dan-Cohen, I., Wewers, S.: Sage code. http://www.uni-ulm.de/mawi/rmath/mitarbeiter/wewers.html

  15. Dan-Cohen, I., Wewers, S.: Explicit Chabauty–Kim theory for the thrice punctured line in depth 2. Proc. Lond. Math. Soc. (3) 110(1), 133–171 (2015)

    Article  MathSciNet  Google Scholar 

  16. Dan-Cohen, I., Wewers, S.: Mixed Tate motives and the unit equation. Int. Math. Res. Not. IMRN 17, 5291–5354 (2016)

    Article  MathSciNet  Google Scholar 

  17. Deligne, P.: Le groupe fondamental de la droite projective moins trois points. In: Galois Groups Over \({\bf Q}\) (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ., vol.16, pp. 79–297. Springer, New York (1989)

  18. Faddeev, D.K.: The group of divisor classes on some algebraic curves. Sov. Math. Dokl. 2, 67–69 (1961)

    MATH  Google Scholar 

  19. Furusho, H.: \(p\)-adic multiple zeta values. I. \(p\)-adic multiple polylogarithms and the \(p\)-adic KZ equation. Invent. Math. 155(2), 253–286 (2004)

    Article  MathSciNet  Google Scholar 

  20. Furusho, H.: \(p\)-adic multiple zeta values. II. Tannakian interpretations. Am. J. Math. 129(4), 1105–1144 (2007)

    Article  MathSciNet  Google Scholar 

  21. Hain, R.M.: Higher Albanese manifolds. In: Hodge Theory (Sant Cugat, 1985), Lecture Notes in Math., vol. 1246, pp. 84–91. Springer, Berlin (1987)

    Google Scholar 

  22. Kato, K.: Lectures on the approach to Iwasawa theory for Hasse–Weil \(L\)-functions via \(B_{\rm dR}\). I. In: Arithmetic Algebraic Geometry (Trento, 1991), Lecture Notes in Math., vol. 1553, pp. 50–163. Springer, Berlin (1993)

  23. Kim, M.: Diophantine geometry and non-abelian reciprocity laws I. arXiv:1312.7019

  24. Kim, M.: The motivic fundamental group of \(\mathbb{P}^1\setminus \{0,1,\infty \}\) and the theorem of Siegel. Invent. Math. 161(3), 629–656 (2005)

    Article  MathSciNet  Google Scholar 

  25. Kim, M.: The unipotent Albanese map and Selmer varieties for curves. Publ. Res. Inst. Math. Sci. 45(1), 89–133 (2009)

    Article  MathSciNet  Google Scholar 

  26. Kim, M.: Massey products for elliptic curves of rank 1. J. Am. Math. Soc. 23(3), 725–747 (2010)

    Article  MathSciNet  Google Scholar 

  27. Kim, M.: \(p\)-adic \(L\)-functions and Selmer varieties associated to elliptic curves with complex multiplication. Ann. Math. (2) 172(1), 751–759 (2010)

    Article  MathSciNet  Google Scholar 

  28. Kim, M.: Remark on fundamental groups and effective Diophantine methods for hyperbolic curves. In: Number Theory, Analysis and Geometry, pp. 355–368. Springer, New York (2012)

    Google Scholar 

  29. Kolyvagin, V.A.: On the Mordell–Weil group and the Shafarevich–Tate group of modular elliptic curves. In: Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), pp. 429–436. Math. Soc. Japan, Tokyo (1991)

  30. Kim, M., Tamagawa, A.: The \(l\)-component of the unipotent Albanese map. Math. Ann. 340(1), 223–235 (2008)

    Article  MathSciNet  Google Scholar 

  31. Mazur, B., Stein, W., Tate, J.: Computation of \(p\)-adic heights and log convergence. Doc. Math. (Extra Vol.) 577–614 (2006)

  32. Mumford, D.: Abelian varieties, volume 5 of Tata Institute of Fundamental Research Studies in Mathematics. Published for the Tata Institute of Fundamental Research, Bombay; by Hindustan Book Agency, New Delhi, 2008. With appendices by C. P. Ramanujam and Yuri Manin, Corrected reprint of the second (1974) edition

  33. Moonen, B., van der Geer, G., Edixhoven, B.: Abelian Varieties. https://www.math.ru.nl/~bmoonen/research.html#bookabvar

  34. Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, 2nd edn. Springer, Berlin (2008)

    Google Scholar 

  35. Olsson, M.C.: Towards non-abelian \(p\)-adic Hodge theory in the good reduction case. Mem. Am. Math. Soc. 210(990), vi+157 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Serre, J.-P.: Local class field theory. In: Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), pp. 128–161. Thompson, Washington, D.C. (1967)

  37. Groupes de monodromie en géométrie algébrique. I. Lecture Notes in Mathematics, Vol. 288. Springer-Verlag, Berlin-New York, 1972. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I), Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim

  38. Silverman, J.H.: Computing heights on elliptic curves. Math. Comput. 51(183), 339–358 (1988)

    Article  MathSciNet  Google Scholar 

  39. Silverman, J.H.: Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, vol. 151. Springer, New York (1994)

  40. Silverman, J.H.: The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, vol. 106, 2nd edn. Springer, Dordrecht (2009)

    Book  Google Scholar 

  41. Soulé, C.: \(K\)-théorie des anneaux d’entiers de corps de nombres et cohomologie étale. Invent. Math. 55(3), 251–295 (1979)

    Article  MathSciNet  Google Scholar 

  42. Tate, J.T.: Global class field theory. In: Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), pp. 162–203. Thompson, Washington, D.C. (1967)

Download references

Acknowledgements

M.K. is grateful to John Coates, Henri Darmon, Kazuya Kato, Florian Pop, and Andrew Wiles for a continuous stream of discussions on the topic of this paper. He is also grateful to Shinichi Mochizuki whose question prompted a precise formulation of the conjecture, and to Yuichiro Hoshi for a kind and detailed reply to a question about a pro-p analogue. We would like to thank the referee for many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishai Dan-Cohen.

Additional information

Communicated by A. Venkatesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakrishnan, J.S., Dan-Cohen, I., Kim, M. et al. A non-abelian conjecture of Tate–Shafarevich type for hyperbolic curves. Math. Ann. 372, 369–428 (2018). https://doi.org/10.1007/s00208-018-1684-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1684-x

Mathematics Subject Classification

Navigation