Advertisement

Mathematische Annalen

, Volume 372, Issue 1–2, pp 229–255 | Cite as

Maximizers for the variational problems associated with Sobolev type inequalities under constraints

  • Van Hoang NguyenEmail author
Article
  • 147 Downloads

Abstract

We propose a new approach to study the existence and non-existence of maximizers for the variational problems associated with Sobolev type inequalities both in the subcritical case and critical case under the equivalent constraints. The method is based on an useful link between the attainability of the supremum in our variational problems and the attainablity of the supremum of some special functions defined on \((0,\infty )\). Our approach can be applied to the same problems related to the fractional Laplacian operators. Our main results are new in the critical case and in the setting of the fractional Laplacian operator which was left open in the work of Ishiwata and Wadade (Math Ann 364:1043–1068, 2016) and Ishiwata (On variational problems associated with Sobolev type inequalities and related topics. http://www.rism.it/doc/Ishiwata.pdf, 2015). In the subcritical case, our approach provides a new and elementary proof of the results of Ishiwata and Wadade (2016) and Ishiwata (2015).

Mathematics Subject Classification

46E35 26D10 

Notes

Acknowledgements

This work was supported by the CIMI’s postdoctoral research fellowship.

References

  1. 1.
    Adachi, S., Tanaka, K.: Trudinger type inequalities in \({\mathbb{R}}^N\) and their best constant. Proc. Am. Math. Soc. 128, 2051–2057 (2000)CrossRefGoogle Scholar
  2. 2.
    Adimurthi, Druet, O.: Blow-up analysis in dimension \(2\) and a sharp form of Trudinger–Moser inequality. Comm. Partial Differ. Equ. 29, 295–322 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Adimurthi, Sandeep, K.: A singular Moser–Trudinger embedding and its applications. Nonlinear Differ. Equ. Appl. 13, 585–603 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Adimurthi, Yang, Y.: An interpolation of Hardy inequality and Trudinger–Moser inequality in \({\mathbb{R}}^{N}\) and its applications. Int. Math. Res. Not. IMRN 13, 2394–2426 (2010)zbMATHGoogle Scholar
  5. 5.
    Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)CrossRefGoogle Scholar
  6. 6.
    Brasco, L., Mosconi, S., Squassina, M.: Optimal decay of extremals for the fractional Sobolev inequality. Calc. Var. Partial Differ. Equ. 55, 32 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Brezis, H., Lieb, E.H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brothers, J.E., Ziemer, W.P.: Minimal rearrangements of Sobolev functions. J. Reine. Angew. Math. 348, 153–179 (1988)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Cao, D.: Nontrivial solution of semilinear elliptic equations with critical exponent in \({\mathbb{R}}^2\). Comm. Partial Differ. Equ. 17, 407–435 (1992)CrossRefGoogle Scholar
  10. 10.
    Carleson, L., Chang, S.Y.A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. 110, 113–127 (1986)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Cordero-Erausquin, D., Nazaret, B., Villani, C.: A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182, 307–332 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    do Ó, J.M., de Souza, M.: A sharp inequality of Trudinger–Moser type and extremal functions in \(H^{1,n}({\mathbb{R}}^{n})\). J. Differ. Equ. 258, 4062–4101 (2015)CrossRefGoogle Scholar
  14. 14.
    do Ó, J.M., Sani, F., Tarsi, C.: Vanishing–concentration–compactness alternative for the Trudinger–Moser inequality in \({\mathbb{R}}^{N}\). Commun. Contemp. Math 20, 1650036 (2018). (pp. 27)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Flucher, M.: Extremal functions for the Trudinger-Moser inequality in \(2\) dimensions comment. Math. Helv. 67, 471–497 (1992)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ishiwara, M.: Existence and nonexistence of maximizers for variational problems associated with Trudinger-Moser inequalities in \(\mathbb{R}^N\). Math. Ann. 351, 781–804 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ishiwata, M., Wadade, H.: On the effect of equivalent constrain on a maximizing problem associated with the Sobolev type embedding in \({\mathbb{R}}^N\). Math. Ann. 364, 1043–1068 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ishiwata, M.: On variational problems associated with Sobolev type inequalities and related topics. In: Nonlinear phenomena in mathematics and economics, 14–18 Sep 2015. http://www.rism.it/doc/Ishiwata.pdf (2015)
  19. 19.
    Lam, N., Lu, G., Zhang, L.: Equivalence of critical and subcritical sharp Trudinger-Moser-Adams inequalities. Rev. Mat. Iberoam. 33, 1219–1246 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Li, Y., Ruf, B.: A sharp Trudinger-Moser type inequality for unbounded domains in \({\mathbb{R}}^n\). Indiana Univ. Math. J. 57, 451–480 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lieb, E.H.: Sharp constants in the Hardy-Littlewood-Sobolev inequalities and related inequalities. Ann. Math. 118, 349–374 (1983)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lin, K.: Extremal functions for Moser’s inequality. Trans. Am. Math. Soc. 348, 2663–2671 (1996)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lions, P.L.: The concentration-compactness principle in the calculus of variations, the limit case, part \(1\). Rev. Mat. Iberoamericane 1, 145–201 (1985)CrossRefGoogle Scholar
  24. 24.
    Lions, P.L.: The concentration-compactness principle in the calculus of variations, the limit case, part \(2\). Rev. Mat. Iberoamericane 1, 45–121 (1985)CrossRefGoogle Scholar
  25. 25.
    Maz’ya, V., Shaposhnikova, T.: On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces. J. Funct. Anal. 195, 230–238 (2002)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/71)Google Scholar
  27. 27.
    Nguyen, V.H.: Extremal functions for the Moser–Trudinger inequality of Adimurthi–Druet type in \(W^{1,N}(\mathbb{R}^{N})\), Commun. Contemp. Math.  https://doi.org/10.1142/S0219199718500232
  28. 28.
    Pohožaev, S.I.: On the eigenfunctions of the equation \(\Delta u + \lambda f(u) = 0\). Dokl. Akad. Nauk. SSSR 165, 36–39 (1965). (Russian)MathSciNetGoogle Scholar
  29. 29.
    Ruf, B.: A sharp Trudinger-Moser type inequality for unbounded domains in \({\mathbb{R}}^2\). J. Funct. Anal. 219, 340–367 (2005)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Struwe, M.: Critical points of embeddings of \(H_0^{1,n}\) into Orlicz spaces. Ann. Inst. H. Poincaré, Anal. Non Linéaire 5, 425–464 (1988)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Talenti, G.: Best constants in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Trudinger, N.S.: On imbedding into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Yudovič, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations. Dokl. Akad. Nauk. SSSR 138, 805–808 (1961). (Russian)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Research and DevelopmentDuy Tan UniversityDa NangVietnam

Personalised recommendations