Advertisement

Mathematische Annalen

, Volume 373, Issue 1–2, pp 489–516 | Cite as

Bar-Natan’s deformation of Khovanov homology and involutive monopole Floer homology

  • Francesco LinEmail author
Article
  • 48 Downloads

Abstract

We study the conjugation involution in Seiberg–Witten theory in the context of Ozsváth–Szabó and Bloom’s spectral sequence for the branched double cover of a link L in \(S^3.\) We prove that there exists a spectral sequence of \(\mathbb {F}[Q]/Q^2\)-modules (where Q has degree \(-1\)) which converges to \(\widetilde{ HMI }_*(\Sigma (L)),\) an involutive version of the monopole Floer homology of the branched double cover, and whose \(E^2\)-page is a version of Bar-Natan’s deformation of Khovanov homology in characteristic two of the mirror of L.

Notes

Acknowledgements

The author would like to thank Paolo Aceto, Ciprian Manolescu, Peter Ozsváth and Zoltán Szabó for the helpful discussions, and the anonymous referee for providing many constructive comments. This work was partially supported by the Shing-Shen Chern Membership Fund and the IAS Fund for Math.

References

  1. 1.
    Baldwin, J., Hedden, M., Lobb, A.: On the functoriality of Khovanov-Floer theories (2015) (preprint). arXiv:1507.00383
  2. 2.
    Bloom, J.M.: A link surgery spectral sequence in monopole Floer homology. Adv. Math. 226(4), 3216–3281 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bar-Natan, D.: On Khovanov’s categorification of the Jones polynomial. Algebraic Geom. Topol. 2, 337–370 (2002) (electronic) Google Scholar
  4. 4.
    Bar-Natan, D.: Khovanov’s homology for tangles and cobordisms. Geom. Topol. 9, 1443–1499 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Donaldson, S.K., Kronheimer, P.B.: The Geometry of Four-Manifolds. Oxford Mathematical Monographs. The Clarendon Press/Oxford University Press/Oxford Science Publications, New York (1990)Google Scholar
  6. 6.
    Gompf, R.E., Stipsicz, A.I.: \(4\)-Manifolds and Kirby Calculus. Graduate Studies in Mathematics, vol. 20. American Mathematical Society, Providence (1999)Google Scholar
  7. 7.
    Hendricks, K., Manolescu, C.: Involutive Heegaard Floer homology. Duke (2015) (preprint, to appear). arXiv:1509.04691
  8. 8.
    Khovanov, M.: A categorification of the Jones polynomial. Duke Math. J. 101(3), 359–426 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kronheimer, P., Mrowka, T.: Monopoles and Three-Manifolds. New Mathematical Monographs, vol. 10. Cambridge University Press, Cambridge (2007)Google Scholar
  10. 10.
    Kronheimer, P.B., Mrowka, T.S.: Khovanov homology is an unknot-detector. Publ. Math. Inst. Hautes Études Sci. 113, 97–208 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kronheimer, P., Mrowka, T., Ozsváth, P., Szabó, Z.: Monopoles and lens space surgeries. Ann. Math. (2) 165(2), 457–546 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lee, E.S.: An endomorphism of the Khovanov invariant. Adv. Math. 197(2), 554–586 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lin, F.: A Morse–Bott approach monopole Floer homology and the Triangulation Conjecture. Mem. AMS (2016) (to appear) Google Scholar
  14. 14.
    Lin, F.: Lectures on monopole Floer homology. In: Proceedings of the Gökova Geometry-Topology Conference 2015, pp. 39–80. Gökova Geometry/Topology Conference (GGT), Gökova (2016)Google Scholar
  15. 15.
    Lin, F.: The surgery exact triangle in Pin(2)-monopole Floer homology (2016) (preprint). arXiv:1605.03137
  16. 16.
    Manolescu, C.: Pin(2)-equivariant Seiberg–Witten Floer homology and the triangulation conjecture. J. Am. Math. Soc. 29(1), 147–176 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Manolescu, C., Ozsváth, P.: On the Khovanov and knot Floer homologies of quasi-alternating links. In: Proceedings of Gökova Geometry-Topology Conference 2007, pp. 60–81. Gökova Geometry/Topology Conference (GGT), Gökova (2008)Google Scholar
  18. 18.
    Ozsváth, P.S., Rasmussen, J., Szabó, Z.: Odd Khovanov homology. Algebraic Geom. Topol. 13(3), 1465–1488 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ozsváth, P., Szabó, Z.: Holomorphic disks and topological invariants for closed three-manifolds. Ann. Math. (2) 159(3), 1027–1158 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ozsváth, P., Szabó, Z.: On the Heegaard Floer homology of branched double-covers. Adv. Math. 194(1), 1–33 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Seidel, P., Smith, I.: Localization for involutions in Floer cohomology. Geom. Funct. Anal. 20(6), 1464–1501 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Stoffregen, M.: A remark on Pin(2)-equivariant Floer homology. Mich. Math. J. 66(4), 867–884 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Turaev, V.G.: Classification of oriented Montesinos links via spin structures. In: Topology and Geometry—Rohlin Seminar. Lecture Notes in Mathematics, vol. 1346, pp. 271–289. Springer, Berlin (1988)Google Scholar
  24. 24.
    Turner, P.R.: Calculating Bar-Natan’s characteristic two Khovanov homology. J. Knot Theory Ramif. 15(10), 1335–1356 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA
  2. 2.School of Mathematics, Institute for Advanced StudyPrincetonUSA

Personalised recommendations