Skip to main content
Log in

Finite index theorems for iterated Galois groups of cubic polynomials

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let K be a number field or a function field. Let \(f\in K(x)\) be a rational function of degree \(d\ge 2\), and let \(\beta \in {\mathbb {P}}^1(\overline{K})\). For all \(n\in \mathbb {N}\cup \{\infty \}\), the Galois groups \(G_n(\beta )={{\mathrm{Gal}}}(K(f^{-n}(\beta ))/K(\beta ))\) embed into \({{\mathrm{Aut}}}(T_n)\), the automorphism group of the d-ary rooted tree of level n. A major problem in arithmetic dynamics is the arboreal finite index problem: determining when \([{{\mathrm{Aut}}}(T_\infty ):G_\infty (\beta )]<\infty \). When f is a cubic polynomial and K is a function field of transcendence degree 1 over an algebraic extension of \({\mathbb {Q}}\), we resolve this problem by proving a list of necessary and sufficient conditions for finite index. This is the first result that gives necessary and sufficient conditions for finite index, and can be seen as a dynamical analog of the Serre Open Image Theorem. When K is a number field, our proof is conditional on both the abc conjecture for K and Vojta’s conjecture for blowups of \({\mathbb {P}}^1 \times {\mathbb {P}}^1\). We also use our approach to solve some natural variants of the finite index problem for modified trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bugeaud, Y., Corvaja, P., Zannier, U.: An upper bound for the G.C.D. of \(a^n-1\) and \(b^n-1\). Math. Z. 243(1), 79–84 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benedetto, R.L., Faber, X., Hutz, B., Juul, J., Yasufuku, Y.: A large arboreal Galois representation for a cubic postcritically finite polynomial. arXiv:1612.03358 (2016)

  3. Bombieri, E., Gubler, W.: Heights in Diophantine Geometry, New Mathematical Monographs, vol. 4. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  4. Bridy, A., Ghioca, D., Hsia, L.-C., Tucker, T.J.: Iterated galois groups of quadratic polynomials. In preparation (2017)

  5. Benedetto, R.L., Ghioca, D., Kurlberg, P., Tucker, T.J.: A case of the dynamical Mordell–Lang conjecture. Math. Ann. 352(1), 1–26 (2012). (With an appendix by Umberto Zannier)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bell, J.P., Ghioca, D., Tucker, T.J.: The Dynamical Mordell–Lang Conjecture, Mathematical Surveys and Monographs, vol. 210. American Mathematical Society, Providence (2016)

    MATH  Google Scholar 

  7. Bridy, A., Ingram, P., Jones, R., Juul, R., Levy, A., Manes, M., Rubinstein-Salzedo, S., Silverman, J.H.: Finite ramification for preimage fields of postcritically finite morphisms. arXiv:1511.00194 (2017). To appear in Math. Res. Lett

  8. Boston, N., Jones, R.: Arboreal Galois representations. Geom. Dedicata 124, 27–35 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boston, N., Jones, R.: The image of an arboreal Galois representation. Pure Appl. Math. Q. 5(1), 213–225 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bridy, A., Tucker, T.J.: \(ABC\) implies a Zsigmondy principle for ramification. J. Number Theory 182, 296–310 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cremona, J.E.: On the Galois groups of the iterates of \(x^2+1\). Mathematika 36(2):259–261 (1989–1990)

  12. Call, G.S., Silverman, J.H.: Canonical heights on varieties with morphisms. Compositio Math. 89(2), 163–205 (1993)

    MathSciNet  MATH  Google Scholar 

  13. Corvaja, P., Zannier, U.: A lower bound for the height of a rational function at \(S\)-unit points. Monatsh. Math. 144(3), 203–224 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Doyle, J., Levy, A., Tucker, T.J.: Quadratic polynomials over function fields are eventually stable. In preparation (2017)

  15. Favre, C., Gauthier, T.: Classification of special curves in the space of cubic polynomials. arXiv:1603.05126 (2016). To appear in Internat. Math. Res. Notices

  16. Fein, B., Schacher, M.: Properties of iterates and composites of polynomials. J. Lond. Math. Soc. (2) 54(3), 489–497 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghioca, D., Krieger, H., Nguyen, K.D., Ye, H.: The dynamical André–Oort conjecture: unicritical polynomials. Duke Math. J. 166(1), 1–25 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gratton, C., Nguyen, K., Tucker, T.J.: \(ABC\) implies primitive prime divisors in arithmetic dynamics. Bull. Lond. Math. Soc. 45(6), 1194–1208 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ghioca, D., Nguyen, K., Tucker, T.J.: Portraits of preperiodic points for rational maps. Math. Proc. Camb. Philos. Soc. 159(1), 165–186 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Granville, A.: \(ABC\) allows us to count squarefrees. Int. Math. Res. Not. 1998(19), 991–1009 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grell, G.: Profinite iterated monodromy groups for cubic polynomials. In preparation (2017)

  22. Ghioca, D., Tucker, T.J.: Periodic points, linearizing maps, and the dynamical Mordell–Lang problem. J. Number Theory 129(6), 1392–1403 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ghioca, D., Tucker, T.J., Zieve, M.E.: Intersections of polynomials orbits, and a dynamical Mordell–Lang conjecture. Invent. Math. 171(2), 463–483 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gubler, W.: Equidistribution over function fields. Manuscripta Math. 127(4), 485–510 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ghioca, D., Ye, H.: The dynamical Andre–Oort conjecture for cubic polynomials. arXiv:1603.05303 (2016). To appear in Int. Math. Res. Not

  26. Hindes, W.: Points on elliptic curves parametrizing dynamical Galois groups. Acta Arith. 159(2), 149–167 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hindes, W.: The arithmetic of curves defined by iteration. Acta Arith. 169(1), 1–27 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hamblen, S., Jones, R., Madhu, K.: The density of primes in orbits of \(z^d+c\). Int. Math. Res. Not. IMRN 2015(7), 1924–1958 (2015)

    MATH  Google Scholar 

  29. Hindry, M., Silverman, J.H.: Diophantine Geometry, Graduate Texts in Mathematics, vol. 201. Springer, New York (2000). (An introduction)

    Book  MATH  Google Scholar 

  30. Huang, K.: Generalized greatest common divisors for the orbits under rational functions. arXiv:1702.03881 (2017)

  31. Ingram, P.: Arboreal Galois representations and uniformization of polynomial dynamics. Bull. Lond. Math. Soc. 45(2), 301–308 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ingram, P., Silverman, J.H.: Primitive divisors in arithmetic dynamics. Math. Proc. Camb. Philos. Soc. 146(2), 289–302 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Juul, J., Kurlberg, P., Madhu, K., Tucker, T.J.: Wreath products and proportions of periodic points. Int. Math. Res. Not. IMRN 2016(13), 3944–3969 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jones, Rafe, Levy, Alon: Eventually stable rational functions. Int. J. Number Theory 13(9), 2299–2318 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jones, R., Manes, M.: Galois theory of quadratic rational functions. Comment. Math. Helv. 89(1), 173–213 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jones, R.: Iterated Galois towers, their associated martingales, and the \(p\)-adic Mandelbrot set. Compos. Math. 143(5), 1108–1126 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jones, R.: The density of prime divisors in the arithmetic dynamics of quadratic polynomials. J. Lond. Math. Soc. (2) 78(2), 523–544 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Jones, R.: Galois representations from pre-image trees: an arboreal survey. In: Actes de la Conférence “Théorie des Nombres et Applications”, Publ. Math. Besançon Algèbre Théorie Nr., vol. 2013, pp. 107–136. Presses Univ. Franche-Comté, Besançon (2013)

  39. Jones, R.: Fixed-point-free elements of iterated monodromy groups. Trans. Am. Math. Soc. 367(3), 2023–2049 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Juul, J.: Iterates of generic polynomials and generic rational functions. arXiv:1410.3814 (2016). To appear in Trans. Am. Math. Soc

  41. Krieger, H.: Primitive prime divisors in the critical orbit of \(z^d+c\). Int. Math. Res. Not. IMRN 2013(23), 5498–5525 (2013)

    Article  MATH  Google Scholar 

  42. Looper, N.: Dynamical Galois groups of trinomials and Odoni’s conjecture. arXiv:1609.03398v2 (2016)

  43. Morton, P., Silverman, J.H.: Rational periodic points of rational functions. Int. Math. Res. Not. 1994(2), 97–110 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  44. Medvedev, A., Scanlon, T.: Invariant varieties for polynomial dynamical systems. Ann. Math. (2) 179(1), 81–177 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Nguyen, K.: Some arithmetic dynamics of diagonally split polynomial maps. Int. Math. Res. Not. IMRN 2015(5), 1159–1199 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Odoni, R.W.K.: The Galois theory of iterates and composites of polynomials. Proc. Lond. Math. Soc. (3) 51(3), 385–414 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  47. Odoni, R.W.K.: Realising wreath products of cyclic groups as Galois groups. Mathematika 35(1), 101–113 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  48. Pink, R.: Finiteness and liftability of postcritically finite morphisms in arbitrary characteristic. arXiv:1305.2841 (2013)

  49. Pink, R.: Profinite iterated monodromy groups arising from quadratic morphisms with infinite postcritical orbits. arXiv:1309.5804 (2013)

  50. Pink, R.: Profinite iterated monodromy groups arising from quadratic polynomials. arXiv:1307.5678 (2013)

  51. Reznick, B.: When is the iterate of a formal power series odd? J. Aust. Math. Soc. Ser. A 28(1), 62–66 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ritt, J.F.: On the iteration of rational functions. Trans. Am. Math. Soc. 21(3), 348–356 (1920)

    Article  MathSciNet  MATH  Google Scholar 

  53. Ritt, J.F.: Permutable rational functions. Trans. Am. Math. Soc. 25(3), 399–448 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  54. Serre, J.-P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15(4), 259–331 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  55. Silverman, J.H.: Generalized greatest common divisors, divisibility sequences, and Vojta’s conjecture for blowups. Monatsh. Math. 145(4), 333–350 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  56. Silverman, J.H.: The Arithmetic of Dynamical Systems, Graduate Texts in Mathematics, vol. 241. Springer, New York (2007)

    Book  Google Scholar 

  57. Stoll, M.: Galois groups over \({ Q}\) of some iterated polynomials. Arch. Math. (Basel) 59(3), 239–244 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  58. Vojta, P.: Diophantine Approximations and Value Distribution Theory, Lecture Notes in Mathematics, vol. 1239. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  59. Xie, J.: The Dynamical Mordell–Lang Conjecture for polynomial endomorphisms of the affine plane. arXiv:1503.00773 (2015). To appear in Astérisque

  60. Yamanoi, K.: The second main theorem for small functions and related problems. Acta Math. 192(2), 225–294 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  61. Yuan, X.: Big line bundles over arithmetic varieties. Invent. Math. 173(3), 603–649 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Thomas Gauthier, Dragos Ghioca, Keping Huang, Rafe Jones, Nicole Looper, and Khoa Nguyen for many helpful conversations. We would also like to thank the referee for many valuable comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Bridy.

Additional information

Communicated by Toby Gee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bridy, A., Tucker, T.J. Finite index theorems for iterated Galois groups of cubic polynomials. Math. Ann. 373, 37–72 (2019). https://doi.org/10.1007/s00208-018-1670-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1670-3

Mathematics Subject Classification

Navigation