Skip to main content

Advertisement

Log in

Spectral properties and rigidity for self-expanding solutions of the mean curvature flows

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we study self-expanders for mean curvature flows. First we show the discreteness of the spectrum of the drifted Laplacian on them. Next we give a universal lower bound of the bottom of the spectrum of the drifted Laplacian and prove that this lower bound is achieved if and only if the self-expander is the Euclidean subspace through the origin. Further, for self-expanders of codimension 1, we prove an inequality between the bottom of the spectrum of the drifted Laplacian and the bottom of the spectrum of weighted stability operator and that the hyperplane through the origin is the unique self-expander where the equality holds. Also we prove the uniqueness of hyperplane through the origin for mean convex self-expanders under some condition on the square of the norm of the second fundamental form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angenent, S., Ilmanen, T., Chopp, D.L.: A computed example of nonuniqueness of mean curvature flow in \({\mathbb{R}}^3\). Comm. Partial Differ. Equ. 20, 1937–1958 (1995)

    Article  Google Scholar 

  2. Cheng, X., Mejia, T., Zhou, D.: Simons-type equation for \(f\)-minimal hypersurfaces and applications. J. Geom. Anal. 25(4), 2667–2686 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheng, X., Mejia, T., Zhou, D.: Stability and compactness for complete \(f\)-minimal surfaces. Trans. Am. Math. Soc. 367(6), 4041–4059 (2015). https://doi.org/10.1090/S0002-9947-2015-06207-2

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheng, X., Mejia, T., Zhou, D.: Eigenvalue estimate and compactness for closed \(f\)-minimal surfaces. Pac. J. Math. 271(2), 347–367 (2014). https://doi.org/10.2140/pjm.2014.271.347

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheng, X., Zhou, D.: Volume estimate about shrinkers. Proc. Am. Math. Soc. 141(2), 687–696 (2013). https://doi.org/10.1090/S0002-9939-2012-11922-7

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng, X., Zhou, D.: Eigenvalues of the drifted Laplacian on complete metric measure spaces. Commun. Contemp. Math. https://doi.org/10.1142/S0219199716500012

  7. Colding, T.H., Minicozzi, W.P.: II Generic mean curvature flow I: generic singularities. Ann. Math. (2) 175(2), 755–833 (2012). https://doi.org/10.4007/annals.2012.175.2.7

    Article  MathSciNet  MATH  Google Scholar 

  8. Colding, T.H., Minicozzi, W.P.: II Smooth Compactness of self-shrinkers. Comment. Math. Helv., 87, 463–475 (2012). https://doi.org/10.4171/CMH/260

  9. Ding, Q.: Minimal cones and self-expanding solutions for mean curvature flows. arXiv:1503.02612 [math.DG] 9 Mar (2015)

  10. Ding, Q., Xin, Y.L.: Volume growth eigenvalue and compactness for self-shrinkers. Asian J. Math. 17(3), 443–456 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ecker, K., Huisken, G.: Mean curvature evolution of entire graphs. Ann. Math. 2nd Ser 130(3), 453–471 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fong, F.T.H., McGrath, P.: Rotational symmetry of asymptotically conical mean curvature flow self-expanders. arXiv:1609.02105v1 [math.DG] 7 Sep, Comm. Anal. Geom (2016) (to appear)

  13. Fischer-Colbrie, D., Schoen, R.: The structure of complete stable surfaces in 3-manifolds of nonnegative scalar curvature. Comm. Pure Appl. Math. 33(2), 199–211 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grigor’yan, A.: Heat Kernel and analysis on manifolds. American Mathematical Soc. (2009) (English)

  15. Huisken, G.: Local and global behaviour of hypersurfaces moving by mean curvature. Differential geometry: partial differential equations on manifolds (Los Angeles, CA) Proc. Sympos. Pure Math., 54, Part 1, Amer. Math. Soc. Providence, RI 1993, 175–191 (1990)

  16. Ilmanen, T.: Lectures on mean curvature flow and related equations (Trieste Notes) (1995)

  17. Li, P., Wang, J.: Weighted Poincaré inequality and rigidity of complete manifolds, Ann. Sci. École Norm. Sup. (4), 39(6), 921–982 (2006). https://doi.org/10.1016/j.ansens.2006.11.001 (English, with English and French summaries)

  18. Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London (1978)

    MATH  Google Scholar 

  19. Stavrou, N.: Selfsimilar solutions to the mean curvature flow. J. Reine Angew. Math. 499, 189–198 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Tasayco, D., Zhou, D.: Uniqueness of grim hyperplanes for mean curvature flows. Arch. Math. (Basel) 109(2), 191–200 (2017). https://doi.org/10.1007/s00013-017-1057-9

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detang Zhou.

Additional information

Communicated by F.C. Marques.

The authors are partially supported by CNPq and Faperj of Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Zhou, D. Spectral properties and rigidity for self-expanding solutions of the mean curvature flows. Math. Ann. 371, 371–389 (2018). https://doi.org/10.1007/s00208-018-1662-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1662-3

Mathematics Subject Classification

Navigation