Skip to main content
Log in

On the \(\mathrm {L}^p\)-theory of the Navier–Stokes equations on three-dimensional bounded Lipschitz domains

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

On a bounded Lipschitz domain \(\Omega \subset \mathbb {R}^d\), \(d \ge 3\), we continue the study of Shen (Arch Ration Mech Anal 205(2):395–424, 2012) and of Kunstmann and Weis (J Evol Equ 387–409, 2016) of the Stokes operator on \(\mathrm {L}^p_{\sigma } (\Omega )\). We employ their results in order to determine the domain of the square root of the Stokes operator as the space \(\mathrm {W}^{1 , p}_{0 , \sigma } (\Omega )\) for \(|\frac{1}{p} - \frac{1}{2} |< \frac{1}{2d} + \varepsilon \) and some \(\varepsilon > 0\). This characterization provides gradient estimates as well as \(\mathrm {L}^p\)-\(\mathrm {L}^q\)-mapping properties of the corresponding semigroup. In the three-dimensional case this provides a means to show the existence of solutions to the Navier–Stokes equations in the critical space \(\mathrm {L}^{\infty } (0 , \infty ; \mathrm {L}^3_{\sigma } (\Omega ))\) whenever the initial velocity is small in the \(\mathrm {L}^3\)-norm. Finally, we present a different approach to the \(\mathrm {L}^p\)-theory of the Navier–Stokes equations by employing the maximal regularity proven by Kunstmann and Weis (J Evol Equ 387–409, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: On the strong solvability of the Navier–Stokes equations. J. Math. Fluid Mech. 2(1), 16–98 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brown, R.M., Shen, Z.: Estimates for the Stokes operator in Lipschitz domains. Indiana Univ. Math. J. 44(4), 1183–1206 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Denk, R., Hieber, M., Prüss, J.: \({\cal{R}}\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166(788) (2003)

  4. Denk, R., Kaip, M.: General Parabolic Mixed Order Systems in \({\rm L}_p\) and Applications. Operator Theory: Advances and Applications, vol. 239. Birkhäuser/Springer, Cham (2013)

  5. Deuring, P., von Wahl, W.: Strong solutions of the Navier-Stokes system in Lipschitz bounded domains. Math. Nachr. 171, 111–148 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fabes, E., Mendez, O., Mitrea, M.: Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains. J. Funct. Anal. 159(2), 323–368 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Geissert, M., Hess, M., Hieber, M., Schwarz, C., Stavrakidis, K.: Maximal \(L^p - L^q\)-estimates for the Stokes equation: a short proof of Solonnikov’s Theorem. J. Math. Fluid Mech. 12(1), 47–60 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Geng, J., Kilty, J.: The \(L^p\) regularity problem for the Stokes system on Lipschitz domains. J. Differ. Equ. 259(4), 1275–1296 (2015)

    Article  MATH  Google Scholar 

  9. Giga, Y.: Domains of fractional powers of the Stokes operator in \(L_r\) spaces. Arch. Ration. Mech. Anal. 89(3), 251–265 (1985)

    Article  MATH  Google Scholar 

  10. Giga, Y.: Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 62(2), 186–212 (1986)

    Article  MATH  Google Scholar 

  11. Giga, Y., Miyakawa, T.: Solutions in \(L_r\) of the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 89(3), 267–281 (1985)

    Article  MATH  Google Scholar 

  12. Giga, Y., Sohr, H.: Abstract \({\rm L}^p\) estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 102(1), 72–94 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haase, M.: The Functional Calculus for Sectorial Operators. Operator Theory: Advances and Applications, vol. 169. Birkhäuser, Basel (2006)

  14. Kato, T.: Strong \({\rm L}^p\)-solutions of the Navier-Stokes equations in \({\mathbb{R}}^m\), with applications to weak solutions. Math. Z. 187(4), 471–480 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kato, T., Fujita, H.: On the nonstationary Navier–Stokes system. Rend. Sem. Mat. Univ. Padova 32, 243–260 (1962)

    MathSciNet  MATH  Google Scholar 

  16. Kunstmann, P.C., Weis, L.: New criteria for the \(\text{ H }^{\infty }\)-calculus and the Stokes operator on bounded Lipschitz domains. J. Evol. Equ. 17(1), 387–409 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressible flow. Mathematics and its Applications, vol. 2. Gordon and Breach Science Publishers, New York (1969)

  18. Mitrea, M., Monniaux, S.: The regularity of the Stokes operator and the Fujita-Kato approach to the Navier–Stokes initial value problem in Lipschitz domains. J. Funct. Anal. 254(6), 1522–1574 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mitrea, M., Wright, M.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque 344 (2012)

  20. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa (3) 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  21. Saal, J.: Strong solutions for the Navier-Stokes equations on bounded and unbounded domains with a moving boundary. Electron. J. Differ. Equ. Conf. 15, 365–375 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Shen, Z.: Bounds on Riesz transforms on \(L^p\)-spaces for second order elliptic operators. Ann. Inst. Fourier (Grenoble) 55(1), 173–197 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shen, Z.: Resolvent estimates in \({\rm L}^p\) for the Stokes operator in Lipschitz domains. Arch. Ration. Mech. Anal. 205(2), 395–424 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sohr, H.: The Navier–Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser, Basel (2001)

    Google Scholar 

  25. Solonnikov, V.A.: Estimates for solutions of nonstationary Navier–Stokes equations. J. Soviet Math. 8(4), 467–529 (1977)

    Article  MATH  Google Scholar 

  26. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1986)

    Google Scholar 

  27. Taylor, M.E.: Incompressible fluid flows on rough domains. In: Semigroups of operators: theory and applications (Newport Beach, CA, 1998). Progr. Nonlinear Differential Equations Appl., vol. 42, pp. 320–334. Birkhäuser, Basel (2000)

  28. Temam, R.: Navier–Stokes equations and nonlinear functional analysis. CBMS-NFS Regional Conference Series in Applied Mathematics, vol. 66. SIAM, Philadelphia (1995)

  29. Tolksdorf, P.: On the \({\rm L}^p\)-theory of the Navier–Stokes equations on Lipschitz domains. Technische Universität Darmstadt, Darmstadt. http://tuprints.ulb.tu-darmstadt.de/5960/ (2017)

Download references

Acknowledgements

I would like to thank Robert Haller-Dintelmann for the supervision and the support during the time of my PhD-studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Tolksdorf.

Additional information

Communicated by Y. Giga.

The author was supported by “Studienstiftung des deutschen Volkes”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolksdorf, P. On the \(\mathrm {L}^p\)-theory of the Navier–Stokes equations on three-dimensional bounded Lipschitz domains. Math. Ann. 371, 445–460 (2018). https://doi.org/10.1007/s00208-018-1653-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1653-4

Mathematics Subject Classification

Navigation