Skip to main content
Log in

Reduction of manifolds with semi-negative holomorphic sectional curvature

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this note, we continue the investigation of a projective Kähler manifold M of semi-negative holomorphic sectional curvature H. We introduce a new differential geometric numerical rank invariant which measures the number of linearly independent truly flat directions of H in the tangent spaces. We prove that this invariant is bounded above by the nef dimension and bounded below by the numerical Kodaira dimension of M. We also prove a splitting theorem for M in terms of the nef dimension and, under some additional hypotheses, in terms of the new rank invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, H.-D.: Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds. Invent. Math. 81(2), 359–372 (1985)

    Article  MathSciNet  Google Scholar 

  2. Debarre, O.: Universitext. Higher-dimensional algebraic geometry. Springer, New York (2001)

    Google Scholar 

  3. Diverio, S., Trapani, S.: Quasi-negative holomorphic sectional curvature and positivity of the canonical bundle. arXiv:1606.01381v3 (2016)

  4. Griffiths, P., Harris, J.: Wiley Classics Library. Principles of algebraic geometry. Wiley, New York (1994). (reprint of the 1978 original)

    Google Scholar 

  5. Heier, G., Lu, S., Wong, B.: On the canonical line bundle and negative holomorphic sectional curvature. Math. Res. Lett. 17(6), 1101–1110 (2010)

    Article  MathSciNet  Google Scholar 

  6. Heier, G., Lu, S., Wong, B.: Kähler manifolds of semi-negative holomorphic sectional curvature. J. Differ. Geom. 104(3), 419–441 (2016)

    Article  Google Scholar 

  7. Liu, G.: Compact Kähler manifolds with nonpositive bisectional curvature. Geom. Funct. Anal. 24(5), 1591–1607 (2014)

    Article  MathSciNet  Google Scholar 

  8. Milne, J.: Princeton Mathematical Series. Étale cohomology, 33rd edn. Princeton University Press, Princeton (1980)

    Google Scholar 

  9. Miyaoka, Y., Peternell, Th.: Geometry of higher-dimensional algebraic varieties. In: DMV Seminar, vol. 26. Birkhäuser, Basel (1997)

  10. Serre, J.-P.: Espaces fibrés algébriques. Sémin. Claude Cheval. 3(1), 1–37 (1958)

    Google Scholar 

  11. Tosatti, V., Yang, X.: An extension of a theorem of Wu–Yau. J. Differ. Geom. 107(3), 573–579 (2017)

    Article  MathSciNet  Google Scholar 

  12. Wong, P.M., Wu, D., Yau, S.-T.: Picard number, holomorphic sectional curvature, and ampleness. Proc. Am. Math. Soc. 140(2), 621–626 (2012)

    Article  MathSciNet  Google Scholar 

  13. Wu, D., Yau, S.-T.: Negative holomorphic curvature and positive canonical bundle. Invent. Math. 204(2), 595–604 (2016)

    Article  MathSciNet  Google Scholar 

  14. Wu, D., Yau, S.-T.: A remark on our paper “Negative holomorphic curvature and positive canonical bundle”. Commun. Anal. Geom. 24(4), 901–912 (2016)

    Article  Google Scholar 

  15. Wu, H., Zheng, F.: Compact Kähler manifolds with nonpositive bisectional curvature. J. Differ. Geom. 61(2), 263–287 (2002)

    Article  Google Scholar 

  16. Wu, H., Zheng, F.: Kähler manifolds with slightly positive bisectional curvature. Explorations in complex and Riemannian geometry. Contemp. Math. 332, 305–325 (2003)

    Article  Google Scholar 

  17. Zheng, F.: Complex differential geometry. In: AMS/IP Studies in Advanced Mathematics, vol. 18. American Mathematical Society, Providence (2000)

Download references

Acknowledgements

We would like to thank Kefeng Liu, Hongwei Xu, and Shing-Tung Yau for their interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon Heier.

Additional information

F. Zheng is partially supported by a Simons Collaboration Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heier, G., Lu, S.S.Y., Wong, B. et al. Reduction of manifolds with semi-negative holomorphic sectional curvature. Math. Ann. 372, 951–962 (2018). https://doi.org/10.1007/s00208-017-1638-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1638-8

Mathematics Subject Classification

Navigation