Skip to main content
Log in

Rational structures on automorphic representations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

This paper proves the existence of global rational structures on spaces of cusp forms of general reductive groups. We identify cases where the constructed rational structures are optimal, which includes the case of \({{\mathrm{\mathrm {GL}}}}(n)\). As an application, we deduce the existence of a natural set of periods attached to cuspidal automorphic representations of \({{\mathrm{\mathrm {GL}}}}(n)\). This has consequences for the arithmetic of special values of L-functions that we discuss in Januszewski (On period relations for automorphic L-functions I, pp. 1–46, arXiv:1504.06973, 2015, On period relations for automorphic L-functions II, pp. 1–65, arXiv:1604.04253, 2015). In the course of proving our results, we lay the foundations for a general theory of Harish-Chandra modules over arbitrary fields of characteristic 0. In this context, a rational character theory, translation functors and an equivariant theory of cohomological induction are developed. We also study descent problems for Harish-Chandra modules in quadratic extensions, where we obtain a complete theory over number fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J.D.: The real Chevalley involution. Compos. Math. 150, 2127–2142 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arthur, J., Clozel, L.: Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula. Annals of Mathematics Studies, vol. 120. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  3. Bernstein, J., Krötz, B.: Smooth Fréchet globalizations of Harish-Chandra modules. Isr. J. Math. 199, 45–111 (2014)

    Article  MATH  Google Scholar 

  4. Blasius, D., Harris, M., Ramakrishnan, D.: Coherent cohomology, limits of discrete series, and Galois conjugation. Duke Math. J. 73, 647–685 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borel, A., Tits, J.: Groupes réductifs. Publ. Math. l’I.H.É.S. 27, 55–151 (1965)

    Article  MATH  Google Scholar 

  6. Bourbaki, N.: Groupes et algèbres de Lie. Éléments de mathématique. Hermann, Paris (1982)

    MATH  Google Scholar 

  7. Buzzard, K., Gee, T.: The conjectural connections between automorphic representations and Galois representations. In: Proceedings of LMS Durham Symposium (2011)

  8. Casselman, W.: Canonical extensions of Harish-Chandra modules to representations of \(G\). Can. J. Math. 41, 385–438 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Clozel, L.: Motifs et formes automorphes: applications du principe de fonctorialité (French) [Motives and automorphic forms: applications of the functoriality principle]. In: Automorphic Forms, Shimura Varieties, and \(L\)-Functions, vol. I (Ann Arbor, MI, 1988), Perspective Mathematics, vol. 10, pp. 77–159. Academic Press, Boston, MA (1990)

  10. Cui, R.: The real-quaternionic indicator of irreducible self-conjugate representations of real reductive groups and a comment on the local langlands correspondence of GL(2, F). Ph.D. Thesis, University of Maryland (2016)

  11. Cui, R.: The real-quaternionic indicator. 1–21 (2016). https://cuiran.github.io/pdf/indicator_paper.pdf

  12. Deligne, P.: Variétés de Shimura: Interpretation modulaire et techniques de construction de modèles canoniques, Automorphic forms, representations and \(L\)-functions. In: Borel, A., Casselman, W. (eds.) Proceedings of the Symposium in Pure Mathematics, vol. 33(2), pp. 247–290. American Mathematical Society Providence, RI (1979)

  13. Deligne, P.: Valeurs de fonctions \(L\) et périodes d’intégrales, Automorphic forms, representations and \(L\)-functions. In: Borel, A., Casselman, W. (eds.) Proceedings of the Symposium in Pure Mathematics, vol. 33(2), pp. 313–346. American Mathematical Society, Providence, RI (1979)

  14. Enright, T.J.: Relative Lie algebra cohomology and unitary representations of complex Lie groups. Duke Math. J. 46, 513–525 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Franke, J.: Harmonic analysis in weighted \(L_2\)-spaces. Ann. Sci. l’École Norm. Supér. 31, 181–279 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Franke, J., Schwermer, J.: A decomposition of spaces of automorphic forms, and the Eisenstein cohomology of arithmetic groups. Math. Ann. 311, 765–790 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Frobenius, F.G., Schur, I.: Über die reellen Darstellungen der endlichen Gruppen, pp. 186–208. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin (1906)

  18. Grobner, H., Harris, M.: Whittaker periods, motivic periods, and special values of tensor product \(L\)-functions. J. Inst. Math. Jussieu 15, 711–769 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Harder, G.: On the cohomology of discrete arithmetically defined groups. In: Colloquium on Discrete Subgroups of Lie Groups and Applications to Moduli (Bombay 1973), pp. 129–160 (1975)

  20. Harder, G.: Eisenstein cohomology of arithmetic groups: the case \({{\rm GL}}_2\). Invent. Math. 89, 37–118 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Harder, G.: Arithmetic aspects of rank one Eisenstein cohomology. In: Cycles, Motives and Shimura Varieties, TIFR, pp. 131–190 (2010)

  22. Harder, G.: Harish-Chandra modules over \({{\bf Z}}\) (2014). arXiv:1407.0574

  23. Harder, G., Raghuram, A.: Eisenstein cohomology for \({{\rm GL}}_n\) and ratios of critical values of Rankin–Selberg \(L\)-functions (2014). arXiv:1405.6513 (With Appendix 1 by Uwe Weselmann and Appendix 2 by Chandrasheel Bhagwat and A. Raghuram)

  24. Harris, M.: Beilinson–Bernstein localization over \({\mathbb{Q}}\) and periods of automorphic forms. Int. Math. Res. Not. 2013, 2000–2053 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hochschild, G.P., Serre, J.-P.: Cohomology of Lie algebras. Ann. Math. 57, 591–603 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  26. Januszewski, F.: Algebraic characters of Harish-Chandra modules and arithmeticity, pp. 1–65 (2013). arXiv:1310.6884

  27. Januszewski, F.: Algebraic characters of Harish-Chandra modules. J. Lie Theory 24, 1161–1206 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Januszewski, F.: On \(p\)-adic \(L\)-functions for GL\((n)\times \) GL\((n-1)\) over totally real fields. Int. Math. Res. Not. (2014). doi:10.1093/imrn/rnu181

    MATH  Google Scholar 

  29. Januszewski, F.: On period relations for automorphic \(L\)-functions I, pp. 1–46 (2015). arXiv:1504.06973

  30. Januszewski, F.: On period relations for automorphic \(L\)-functions II, pp. 1–65 (2015). arXiv:1604.04253

  31. Knapp, A.W., Vogan, D.A.: Cohomological Induction and Unitary Representations. Princeton University Press, Princeton (1995)

    Book  MATH  Google Scholar 

  32. Kostant, B.: On the tensor product of a finite and an infinite representation. J. Funct. Anal. 20, 257–285 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lang, S.: Algebraic groups over finite fields. Am. J. Math. 78, 553–563 (1958)

    MathSciNet  Google Scholar 

  34. Langlands, R.P.: On the classification of irreducible representations of real algebraic groups (1973). In: Sally, P.J., Vogan, D.A. (eds.) Representation Theory and Harmonic Analysis on Semisimple Lie Groups, Mathematical Surveys and Monographs, vol. 31, pp. 101–170. American Mathematical Society, Providence (1989)

    Google Scholar 

  35. Langlands, R.P.: On the Functional Equations Satisfied by Eisenstein Series. Lecture Notes in Mathematics, vol. 544. Springer (1976)

  36. Lepowsky, J.: Algebraic results on representations of semi-simple Lie groups. Trans. Am. Math. Soc. 176, 1–44 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lepowsky, J.: A generalization of H. Weyl’s, ”unitary trick”. Trans. Am. Math. Soc. 216, 229–236 (1976)

    MathSciNet  MATH  Google Scholar 

  38. Li, J., Schwermer, J.: On the Eistenstein cohomology of arithmetic groups. Duke Math. J. 123, 141–169 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. McLean, R.A.: Classical invariants of principal series and isomorphism of root data. Ph.D. Thesis, University of Maryland (2016)

  40. Moeglin, C., Waldspurger, J.-L.: Décomposition Spéctrale et Séries d’Eisenstein—Une Paraphrase de l’Écriture. Progress in Mathematics, vol. 113 (1994)

  41. Piatetski-Shapiro, I.I.: Euler subgroups. In: Gelfand, I.M. (ed.) Lie Groups and Their Representations, pp. 597–620. Wiley, New York (1971)

    Google Scholar 

  42. Prasad, D., Ramakrishnan, D.: Self-dual representations of division algebras and Weil groups: a contrast. Am. J. Math. 134, 749–767 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Quillen, D.G.: On the endomorphism ring of a simple module over an enveloping algebra. Proc. A.M.S. 21, 171–172 (1969)

    MathSciNet  MATH  Google Scholar 

  44. Shalika, J.: The multiplicity one theorem for \({{\rm GL}}(n)\). Ann. Math. 100, 121–161 (1974)

    Article  MathSciNet  Google Scholar 

  45. Shin, S.W., Templier, N.: On fields of rationality for automorphic representations. Compos. Math. (2014). doi:10.1112/S0010437X14007428

    MathSciNet  MATH  Google Scholar 

  46. Speh, B.: Unitary representations of \({{\rm GL}}_n({\mathbf{R}})\) with non-trivial \(({{\mathfrak{g}}}, K)\)-cohomology. Invent. Math. 71, 443–465 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tits, J.: Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque. J. Reine Angew. Math. 247, 196–220 (1971)

    MathSciNet  MATH  Google Scholar 

  48. Vogan, D.: Representations of Real Reductive Groups. Progress in Mathematics, vol. 15. Birkhäuser, Basel (1981)

    MATH  Google Scholar 

  49. Vogan, D., Zuckerman, G.J.: Unitary representations with non-zero cohomology. Compos. Math. 53, 51–90 (1984)

    MATH  Google Scholar 

  50. Wallach, N.: On the constant term of a square integrable automorphic form. In: Arsene, G., Strătilă, Ş. (eds.) Operator Algebras and Group Representations, vol. II, Monographs and Studies in Mathematics, vol. 18, pp. 227–237. Boston (1984)

  51. Weil, A.: Adeles and Algebraic Groups. Institute for Advanced Study, Princeton (1961)

    MATH  Google Scholar 

  52. Zagier, D.: Appendix: On Harder’s \({{\rm SL}}(2,{\mathbf{R}})\)-\({{\rm SL}}(3,{{\bf R}})\)-identity. In: Cycles, Motives and Shimura Varieties, TIFR, pp. 131–190 (2010)

Download references

Acknowledgements

The author thanks Binyong Sun for his hospitality and fruitful discussions, Jacques Tilouine for pointing out that the field of definition of Harish-Chandra modules is related to the L-packet, and Günter Harder for sharing and explaining his work in [22]. The author thanks Jeff Adams for sharing Robert McLean’s and Ran Cui’s work. The author thanks Claus–Günther Schmidt and Anton Deitmar for their comments and remarks on a preliminary version of this paper. Last but not least the author thanks the referee for helpful remarks and the suggestion to include the general reductive case.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Januszewski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Januszewski, F. Rational structures on automorphic representations. Math. Ann. 370, 1805–1881 (2018). https://doi.org/10.1007/s00208-017-1567-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1567-6

Navigation