Mathematische Annalen

, Volume 370, Issue 1–2, pp 287–308 | Cite as

The sharp affine \(L^2\) Sobolev trace inequality and variants

  • P. L. De Nápoli
  • J. Haddad
  • C. H. Jiménez
  • M. MontenegroEmail author


We establish a sharp affine \(L^p\) Sobolev trace inequality by using the \(L_p\) Busemann–Petty centroid inequality. For \(p = 2\), our affine version is stronger than the famous sharp \(L^2\) Sobolev trace inequality proved independently by Escobar and Beckner. Our approach allows also to characterize all extremizers in this case. For this new inequality, no Euclidean geometric structure is needed.

Mathematics Subject Classification

Primary 46E35 Secondary 46E39 51M16 



The authors are indebted to both referees for pointing out several references and several valuable comments on a previous version of this work.


  1. 1.
    Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)CrossRefzbMATHGoogle Scholar
  2. 2.
    Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality. Ann. Math. 138, 213–242 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brendle, S., Chen, S.S.: An existence theorem for the Yamabe problem on manifolds with boundary. J. Eur. Math. Soc. (JEMS) 16, 991–1016 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224, 2052–2093 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Caffarelli, L., Roquejoffre, J.M., Sire, Y.: Variational problems in free boundaries for the fractional Laplacian. J. Eur. Math. Soc. 12, 1151–1179 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Capella, A., Dávila, J., Dupaigne, L., Sire, Y.: Regularity of radial extremal solutions for some non-local semilinear equations. Commun. Partial Differ. Equ. 36, 1353–1384 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Campi, S., Gronchi, P.: The Lp-Busemann–Petty centroid inequality. Adv. Math. 167, 128–141 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cianchi, A.: A sharp trace inequality for functions of bounded variation in the ball. Proc. R. Soc. Edinb. Sect. A Math. 142, 1179–1191 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cianchi, A., Lutwak, E., Yang, D., Zhang, G.: Affine Moser–Trudinger and Morrey–Sobolev inequalities. Calc. Var. Partial Differ. Equ. 36, 419–436 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cianchi, A., Ferone, V., Nitsch, C., Trombetti, C.: Balls minimize trace constants in BV. Journal für die reine und angewandte Mathematik (2014). doi: 10.1515/crelle-2014-0098 zbMATHGoogle Scholar
  12. 12.
    Cordero-Erausquin, D., Nazaret, B., Villani, C.: A mass-transportation approach to sharp Sobolev and Gagliardo–Nirenberg inequalities. Adv. Math. 182(2), 307–332 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Escobar, J.F.: Sharp constant in a Sobolev trace inequality. Indiana Univ. Math. J. 37, 687–698 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Escobar, J.F.: Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary. Ann. Math. 136, 1–50 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Escobar, J.F.: The Yamabe problem on manifolds with boundary. J. Differ. Geom. 35, 21–84 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Federer, H., Fleming, W.H.: Normal and integral currents. Ann. Math. 72, 458–520 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fernández Bonder, J., Saintier, N.: Estimates for the Sobolev trace constant with critical exponent and applications. Ann. Math. Pura Appl. (4) 187(4), 683–704 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Fleming, W.H., Rishel, R.: An integral formula for total gradient variation. Arch. Math. 11, 218–222 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Haberl, C., Schuster, F.E.: Asymmetric affine \(L_p\) Sobolev inequalities. J. Funct. Anal. 257, 641–658 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Haberl, C., Schuster, F.E.: General \(L_p\) affine isoperimetric inequalities. J. Differ. Geom. 83, 1–26 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Haberl, C., Schuster, F.E., Xiao, J.: An asymmetric affine Polya–Szego principle. Math. Ann. 352, 517–542 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Haddad, J., Jiménez, C.H., Montenegro, M.: Sharp affine Sobolev type inequalities via the \(L_{p}\) Busemann-Petty centroid inequality. J. Funct. Anal. 271, 454–473 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Han, Z.-C., Li, Y.Y.: The Yamabe problem on manifolds with boundary: existence and compactness results. Duke Math. J. 99, 489–542 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case II. Rev. Math. Iberoam. 1(2), 45–121 (1985)CrossRefzbMATHGoogle Scholar
  25. 25.
    Ludwig, M., Xiao, J., Zhang, G.: Sharp convex Lorentz–Sobolev inequalities. Mathematische Ann. 350, 169–197 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Lutwak, E.: On some affine isoperimetric inequalities. J. Differ. Geom. 23, 1–13 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lutwak, E., Yang, D., Zhang, G.: \(L_p\) affine isoperimetric inequalities. J. Differ. Geom. 56, 111–132 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lutwak, E., Yang, D., Zhang, G.: Sharp affine \(L_p\) Sobolev Inequalities. J. Differ. Geom. 62, 17–38 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Lutwak, E., Yang, D., Zhang, G.: On the \(L_p\)-Minkowski problem. Trans. Am. Math. Soc. 356, 4359–4370 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Lutwak, E., Yang, D., Zhang, G.: Optimal Sobolev norms and the \(L_p\) Minkowski problem. Int. Math. Res. Not. 1, 1–21 (2006)zbMATHGoogle Scholar
  31. 31.
    Lutwak, E., Zhang, G.: Blaschke–Santaló inequalities. J. Differ. Geom. 47, 1–16 (1997)CrossRefzbMATHGoogle Scholar
  32. 32.
    Marques, F.C.: Existence results for the Yamabe problem on manifolds with boundary. Indiana Univ. Math. J. 54, 1599–1620 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Maz’ja, V.G.: Classes of domains and imbedding theorems for function spaces. Sov. Math. Dokl. 1, 882–885 (1960)MathSciNetGoogle Scholar
  34. 34.
    Nazaret, B.: Best constant in Sobolev trace inequalities on the half-space. Nonlinear Anal. TMA 65, 1977–1985 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Petty, C.M.: Centroid surfaces. Pac. J. Math. 11, 1535–1547 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory, 2nd edn. Cambridge University Press, Cambridge (2013)CrossRefzbMATHGoogle Scholar
  37. 37.
    Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60, 67–112 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Wang, T.: The affine Sobolev–Zhang inequality on \(BV({\mathbb{R}}^n)\). Adv. Math. 230, 2457–2473 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Wang, T.: The affine Pólya–Szegö principle: equality cases and stability. J. Funct. Anal. 265, 1728–1748 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Talenti, G.: Best constant in Sobolev inequality. Ann. Math. Pura Appl. (iv) 110, 353–372 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Zhang, G.: The affine Sobolev inequality. J. Differ. Geom. 53, 183–202 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • P. L. De Nápoli
    • 1
  • J. Haddad
    • 2
  • C. H. Jiménez
    • 3
  • M. Montenegro
    • 2
    Email author
  1. 1.IMAS (UBA-CONICET) and Departamento de Matemática, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina
  2. 2.Departamento de Matemática, ICExUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Departamento de MatemáticaPontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations