Mathematische Annalen

, Volume 371, Issue 3–4, pp 1575–1613 | Cite as

Jet-determination of symmetries of parabolic geometries

  • Boris Kruglikov
  • Dennis The


We establish 2-jet determinacy for the symmetry algebra of the underlying structure of any (complex or real) parabolic geometry. At non-flat points, we prove that the symmetry algebra is in fact 1-jet determined. Moreover, we prove 1-jet determinacy at any point for a variety of non-flat parabolic geometries—in particular torsion-free, parabolic contact, and several other classes.

Mathematics Subject Classification

Primary 58D19 Secondary 57S25 58K70 22F30 



We thank J.M. Landsberg for discussions on minuscule varieties and sub-cominuscule representations. We are grateful to A. Isaev and I. Kossovskiy for information about the results on stability and linearization in CR-geometry. B.K. was supported by the University of Tromsø while visiting the Australian National University (where this work was initiated) and the University of Vienna. D.T. was supported by a Lise Meitner Fellowship (project M1884-N84) of the Austrian Science Fund (FWF).


  1. 1.
    Beloshapka, V.K.: On the dimension of the group of automorphisms of an analytic hypersurface. Math. USSR Izvestiya 14, 223–245 (1980)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bochner, S.: Compact groups of differentiable transformations. Ann. Math. 46(2), 372–381 (1945)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Branson, T., Čap, A., Eastwood, M.G., Gover, A.R.: Prolongations of geometric overdetermined systems of PDE. Int. J. Math. 17, 641–664 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Calderbank, D.M.J., Eastwood, M.G., Matveev, V.S., Neusser, K.: C-projective geometry. arXiv:1512.04516 (2015)
  5. 5.
    Čap, A., Melnick, K.: Essential Killing fields of parabolic geometries. Indiana Univ. Math. J. 62(6), 1917–1953 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Čap, A., Melnick, K.: Essential Killing fields of parabolic geometries: projective and conformal structures. Cent. Eur. J. Math. 11(12), 2053–2061 (2013)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Čap, A., Neusser, K.: On automorphism groups of some types of generic distributions. Differ. Geom. Appl. 27(6), 769–779 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory, Mathematical Surveys and Monographs, vol. 154, American Mathematical Society (2009)Google Scholar
  9. 9.
    Cartan, É.: Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes. I. Ann. Mat. Pura Appl. 11, 17–90 (1932)CrossRefzbMATHGoogle Scholar
  10. 10.
    Cartan, H.: Sur les Groupes de Transformations Analytiques. Act. Sc. et Int, Hermann, Paris (1935)zbMATHGoogle Scholar
  11. 11.
    Chern, S.S., Moser, J.K.: Real hypersurfaces in complex manifolds. Acta Math. 133, 219–271 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ebenfelt, P., Lamel, B., Zaitsev, D.: Finite jet determination of local analytic CR automorphisms and their parametrization by 2-jets in the finite type case. Geom. Funct. Anal. 13, 546–573 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ezhov, V.V.: On the linearization of automorphisms of a real analytic hypersurface. Math. USSR Izvestiya 27(1), 53–84 (1986)CrossRefzbMATHGoogle Scholar
  14. 14.
    Ezhov, V.V.: An example of a real-analytic hypersurface with a nonlinearizable stability group. Math. Notes 44, 824–828 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Frances, C.: Local dynamics of conformal vector fields. Geom. Dedic. 158, 35–59 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Frances, C., Melnick, K.: Normal forms for conformal vector fields. Bull. SMF 141(3), 377–421 (2013)zbMATHGoogle Scholar
  17. 17.
    Isaev, A.V.: Proper actions of high-dimensional groups on complex manifolds. Bull. Math. Sci. (2015). doi: 10.1007/s13373-015-0069-7 MathSciNetzbMATHGoogle Scholar
  18. 18.
    Knapp, A.W.: Lie Groups Beyond an Introduction. Progress in Mathematics, vol. 42, 2nd edn. Birkhäuser Boston Inc., Boston (2002)zbMATHGoogle Scholar
  19. 19.
    Kobayashi, S.: Transformation Groups in Differential Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 70. Springer-Verlag, New York-Heidelberg (1972)CrossRefGoogle Scholar
  20. 20.
    Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. Math. 74(2), 329–387 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kostant, B.: The cascade of orthogonal roots and the coadjoint structure of the nilradical of a Borel subgroup of a semisimple Lie group. Mosc. Math. J. 12(3), 605–620, 669 (2012)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Kruglikov, B.: Point classification of second order ODEs: tresse classification revisited and beyond (with an appendix by Kruglikov and V.Lychagin). In: Abel Symp. 5, Differential Equations: Geometry, Symmetries and Integrability, pp. 199–221. Springer (2009)Google Scholar
  23. 23.
    Kruglikov, B.: Finite-dimensionality in Tanaka theory. Ann. Inst. Henri Poincar Anal. Non Linaire 28(1), 75–90 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kruglikov, B., Matveev, V., The, D.: Submaximally symmetric \(c\)-projective structures. Int. J. Math. 27, 1650022 (2016). doi: 10.1142/S0129167X16500221. 34 pagesMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kruglikov, B., The, D.: The gap phenomenon in parabolic geometries. J. Reine Angew. Math. (Crelle’s Journal) 2017(723), 153–215 (2014). doi: 10.1515/crelle-2014-0072 zbMATHGoogle Scholar
  26. 26.
    Kruzhilin, N.G., Loboda, A.V.: Linearization of local automorphisms of pseudoconvex surfaces. Dokl. Akad. Nauk SSSR 271, 280–282 (1983)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Loboda, A.V.: On local automorphisms of real-analytic hypersurfaces. Math. USSR-Izv. 18, 537–559 (1982)CrossRefzbMATHGoogle Scholar
  28. 28.
    Landsberg, J.M., Manivel, L.: On the projective geometry of rational homogeneous varieties. Comment. Math. Helv. 78(1), 65–100 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Melnick, K., Neusser, K.: Strongly essential flows on irreducible parabolic geometries. Trans. Am. Math. Soc. 368(11), 8079–8110 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Nagano, T., Ochiai, T.: On compact Riemannian manifolds admitting essential projective transformations. J. Fac. Sci. Univ. Tokyo Sect. IA Math 33(2), 233–246 (1986)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Neusser, K.: Prolongation on regular infinitesimal flag manifolds. Int. J. Math. 23(4), 1–41 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Schoen, R.: On the conformal and CR automorphism groups. Geom. Funct. Anal. 5(2), 464–481 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Tanaka, N.: On the pseudo-conformal geometry of hypersurfaces of the space of \(n\) complex variables. J. Math. Soc. Jpn. 14, 397–429 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Webster, S.: On the transformation group of a real hypersurface. Trans. Am. Math. Soc. 231(1), 179–190 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Yamaguchi, K.: Differential systems associated with simple graded Lie algebras, In: Progress in Differential Geometry, Adv. Stud. Pure Math. 22, pp. 413–494. Kinokuniya Company, Tokyo (1993)Google Scholar
  36. 36.
    Yamaguchi, K.: \(G_2\)-geometry of overdetermined systems of second order. In: Analysis and Geometry in Several Complex Variables (Katata, 1997), Trends Math., pp. 289–314. Birkhäuser Boston, Boston (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of TromsøTromsøNorway
  2. 2.Fakultät für MathematikUniversität WienWienAustria
  3. 3.Mathematical Sciences InstituteAustralian National UniversityCanberraAustralia

Personalised recommendations