Mathematische Annalen

, Volume 370, Issue 1–2, pp 191–208 | Cite as

Non-compactness of the space of minimal hypersurfaces

  • Nicolau S. AiexEmail author


We show that the space of min–max minimal hypersurfaces is non-compact when the manifold has an analytic metric of positive Ricci curvature and dimension \(3\le n+1\le 7\). Furthermore, we show that bumpy metrics with positive Ricci curvature admit minimal hypersurfaces with unbounded \(\mathrm{index}+\mathrm{area}\). When combined with the recent work fo F.C. Marques and A. Neves, we then deduce some new properties regarding the infinitely many minimal hypersurfaces they found.

Mathematics Subject Classification

49Q05 53A10 



I am thankful to my Ph.D. adviser André Neves for his guidance and suggestion to work on this problem. I would like to thank the comments of Alessandro Carlotto and Fernando Codá Marques as well as Ben Sharp for helpful discussions and several corrections.


  1. 1.
    Almgren Jr., F.J.: The homotopy groups of the integral cycle groups. Topology 1, 257–299 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Carlotto, A.: Minimal hyperspheres of arbitrarily large morse index, arXiv:1504.02066v1 (2015)
  3. 3.
    Clapp, M., Puppe, D.: Invariants of the Lusternik–Schnirelmann type and the topology of critical sets. Trans. AMS 298(2), 603–620 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cornea, O., Lupton, G., Oprea, J., Tanré, D.: Lusternik–Schnirelmann category. In: Mathematical Surveys and Monographs, vol. 103. American Mathematical Society, Providence, RI (2003)Google Scholar
  5. 5.
    Federer, H.: Geometric Measure Theory. Classics in Mathematics. Springer-Verlag, Berlin (1969)zbMATHGoogle Scholar
  6. 6.
    Guth, L.: Minimax problems related to cup powers and steenrod squares, arXiv:math/0702066 (2008)
  7. 7.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  8. 8.
    Hsiang, W.-Y.: Minimal cones and the spherical Bernstein problem. I. Ann. Math. 118(1), 6173 (1983)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hsiang, W.-Y.: Minimal cones and the spherical Bernstein problem. II. Invent. Math. 74(3), 351369 (1983)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lusternik, L., Schnirelmann, L.: Méthodes Topologiques dans les Problèmes Variationnels, Hermann, Paris (1934)Google Scholar
  11. 11.
    Marques, F.C., Neves, A.: Min–Max theory and the Willmore conjecture. Ann. Math. 179(2), 683–782 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Marques, F. C., Neves, A.: Existence of infinitely many minimal hypersurfaces in positive Ricci curvature, arXiv:1311.6501 (2013)
  13. 13.
    Marques, F. C., Neves, A.: Morse index and multiplicity of min–max minimal hypersurfaces, arXiv:1512.06460 (2015)
  14. 14.
    Pitts, J.T.: Existence and Regularity of Minimal Surfaces on Riemannian Manifolds. Mathematical Notes, vol. 27. Princeton University Press, Princeton (1981)CrossRefzbMATHGoogle Scholar
  15. 15.
    Schoen, R., Simon, L.: Regularity of stable minimal hypersurfaces. Comm. Pure Appl. Math. 34, 741–797 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Simon, L.: Asymptotics for a class of non-linear evolution equations, with applications to geometric problems. Ann. Math. 118, 525–571 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sharp, B.: Compactness of minimal hypersurfaces with bounded index, arXiv:1501.02703v1 (2015)
  18. 18.
    White, B.: Currents and flat chains associated to varifolds, with an application to mean curvature flow. Duke Math. J. 148, 213–228 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    White, B.: The space of minimal submanifolds for avrying Riemannian metrics. Indiana Univ. Math. J. 40(1), 161–200 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    White, B.: On the Bumpy metrics theorem for minimal submanifolds, arXiv:1503.01803 (2015)

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of MathematicsImperial College LondonLondonUK
  2. 2.TorontoCanada

Personalised recommendations