Skip to main content
Log in

Compact Kähler manifolds homotopic to negatively curved Riemannian manifolds

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we show that any compact Kähler manifold homotopic to a compact Riemannian manifold with negative sectional curvature admits a Kähler–Einstein metric of general type. Moreover, we prove that, on a compact symplectic manifold X homotopic to a compact Riemannian manifold with negative sectional curvature, for any almost complex structure J compatible with the symplectic form, there is no non-constant J-holomorphic entire curve \(f:{\mathbb C \,}\rightarrow X\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ballman, W.: Lectures on Kähler Manifold. European Mathematical Society, London (2006)

    Book  Google Scholar 

  2. Brotbek, D.: Hyperbolicity related problems for complete intersection varieties. Compos. Math. 150(3), 369–395 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheeger, J., Ebin, D.: Comparison Theorems in Riemannian Geometry. North-Holland, Amsterdam (1975)

    MATH  Google Scholar 

  4. Gromov, M.: Kähler hyperbolicity and \(L^2\)-Hodge theory. J. Differ. Geom. 33, 263–292 (1991)

    Article  MATH  Google Scholar 

  5. Kobayashi, S.: Hyperbolic Complex Spaces. Grundlehren der Mathematischen Wissenschaften, vol. 318. Springer, Berlin (1998)

    Book  Google Scholar 

  6. Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties. Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  7. Lang, S.: Hyperbolic and Diophantine analysis. Bull. Am. Math. Soc. (N.S.) 14(2), 159–205 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mostow, G. D.: Strong rigidity of locally symmetric spaces. In: Annals of Mathematics Studies, vol. 78. Princeton Univ. Press, Princeton (1973)

  9. Shafarevich, R.I.: Basic Algebraic Geometry. 2. Schemes and Complex Manifolds, 2nd edn. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  10. Siu, Y.-T.: The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds. Ann. Math. (2) 112(1), 73–111 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yau, S.-T.: Calabi’s conjecture and some new results in algebraic geometry. Proc. Nat. Acad. Sci. USA 74(5), 1798–1799 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  MATH  Google Scholar 

  13. Zheng, F.-Y.: First Pontrjagin form, rigidity and strong rigidity of nonpositively curved Kähler surface of general type. Math. Z. 220(2), 159–169 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

B.-L. Chen was partially supported by Grants NSFC11521101, 11025107. X.-K. Yang was partially supported by China’s Recruitment Program of Global Experts and National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences. The authors would like to thank the anonymous referee for pointing out a similar proof in Lemma 3.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Long Chen.

Additional information

Communicated by Ngaiming Mok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, BL., Yang, X. Compact Kähler manifolds homotopic to negatively curved Riemannian manifolds. Math. Ann. 370, 1477–1489 (2018). https://doi.org/10.1007/s00208-017-1521-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1521-7

Navigation