Abstract
Let f(x, y) be an irreducible formal power series without constant term, over an algebraically closed field of characteristic zero. One may solve the equation \(f(x,y)=0\) by choosing either x or y as independent variable, getting two finite sets of Newton–Puiseux series. In 1967 and 1968 respectively, Abhyankar and Zariski published proofs of an inversion theorem, expressing the characteristic exponents of one set of series in terms of those of the other set. In fact, a more general theorem, stated by Halphen in 1876 and proved by Stolz in 1879, relates also the coefficients of the characteristic terms of both sets of series. This theorem seems to have been completely forgotten. We give two new proofs of it and we generalize it to a theorem concerning irreducible series with an arbitrary number of variables.
This is a preview of subscription content, access via your institution.
References
Abhyankar, S.S.: On the ramification of algebraic functions. Am. J. Math. 77, 575–592 (1955)
Abhyankar, S.S.: Inversion and invariance of characteristic pairs. Am. J. Math. 89, 363–372 (1967)
Abhyankar, S.S.: Inversion and invariance of characteristic terms: Part I. In: The legacy of Alladi Ramakrishnan in the mathematical sciences. pp. 93–168, Springer, New York (2010)
Borodzik, M.: Puiseux expansion of a cuspidal singularity. Bul. Polish Acad. Sci. 60, 21–25 (2012)
Campillo, A.: On saturations of curve singularities (any characteristic). Singularities, Part 1 (Arcata, Calif., 1981), vol. 40, pp. 211–220, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI (1983)
Campillo, A.: Arithmetical aspects of saturation of singularities. Singularities (Warsaw, 1985), vol. 20, pp. 121–137, Banach Center Publ. PWN, Warsaw (1988)
Casas-Alvero, E. Singularities of plane curves. London Mathematical Society Lecture Note Series, vol. 276. Cambridge University Press, Cambridge (2000)
Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms. 3rd edn. Springer (2007)
Cutkosky, S.D. Resolution of singularities. Graduate Studies in Maths, vol. 63. American Math. Society (2004)
de Jong, T., Pfister, G.: Local analytic geometry. Adv. Lect. Math. Friedr. Vieweg and Sohn (2000)
Enriques, F., Chisini, O.: Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche II. Zanichelli, Bologna (1917)
Ewald, G., Ishida, M-N.: Completion of real fans and Zariski-Riemann spaces, Tohôku Math. J., (2) 58, 189–218 (2006)
Fischer, G.: Plane algebraic curves. Student Mathematical Library, vol. 15. American Mathematical Society (2001)
Gau, Y.-N.: Embedded topological classification of quasi-ordinary singularities. Memoirs Am. Math. Soc. 388, 109–129 (1988)
Goldin, R., Teissier, B.: Resolving singularities of plane analytic branches with one toric morphism. Resolution of singularities (Obergurgl, 1997), vol. 181, pp. 315–340. Progr. Math. Birkhuser, Basel (2000)
González Pérez, P.D.: Singularités quasi-ordinaires toriques et polyèdre de Newton du discriminant. Can. J. Math. 52(2), 348–368 (2000)
González Pérez, P.D.: The semigroup of a quasi-ordinary hypersurface. J. Inst. Math. Jussieu 2(3), 383–399 (2003)
González Pérez, P.D., Teissier, B.: Toric geometry and the Semple-Nash modification. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. 08(1), 1–48 (2014)
Griffiths, P.: Variations on a theorem of Abel. Inv. Math. 35, 321–390 (1976)
Halphen, G.: Sur une série de courbes analogues aux développées. Journal de maths. pures et appliquées (de Liouville) 3e série, tome 2, 87–144 (1876)
Halphen, G.: Étude sur les points singuliers des courbes algébriques planes. Appendix to G. Salmon’s book Traité de géométrie analytique (courbes planes), pp. 537–648. Gauthier-Villars, Paris (1884)
Jung, H.W.E.: Darstellung der Funktionen eines algebraischen Körpers zweier unabhängigen Veränderlichen \(x\),\(y\) in der Umgebung einer stelle \(x =a\), \(y=b\). J. Reine Angew. Math. 133, 289–314 (1908)
Lagrange, J.-L.: Nouvelle méthode pour résoudre les équations littérales par le moyen des séries. Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Berlin 24, 251–326 (1770)
Lipman, J.: Quasi-ordinary singularities of embedded surfaces. PhD Thesis, Harvard Univ. (1965). https://www.math.purdue.edu/~lipman/papers-older/
Lipman, J.: Relative Lipschitz-saturation. Am. J. Math. 97(3), 791–813 (1975)
Lipman, J.: Quasi-ordinary singularities of surfaces in \({\mathbb{C}}^{3}\). Proc. Symp. Pure Math. 40, 161–172 , Part 2 (1983)
Lipman, J.: Topological invariants of quasi-ordinary singularities. Mem. Am. Math. Soc. 74(388), 1–107 (1988)
Lipman, J.: Appendix to Gau, Y.-N. Embedded topological classification of quasi-ordinary Singularities. Mem. Am. Math.Soc. 388, 109–129 (1988)
Newton, I.: The method of fluxions and infinite series. Printed by H. Woodfall and sold by J. Nourse, London, 1736. Translated into french by M. Buffon, Debure libraire, 1740: La méthode des fluxions et des suites infinies
Pham P., Teissier B.: Saturation Lipschitzienne d’une algèbre analytique complexe et saturation de Zariski. Prépublication École Polytechnique 1969. http://hal.archives-ouvertes.fr/hal-00384928/fr/
Popescu-Pampu, P.: Approximate roots. In: Kuhlmann, F.V. et al. (eds.) Valuation theory and its applications. Fields Inst. Communications, vol. 33, pp. 285–321. AMS (2003)
Puiseux, V.: Recherches sur les fonctions algébriques. Journal de maths. pures et appliquées (de Liouville) 15, 365–480 (1850)
Robbiano, L.: On the theory of graded structures. J. Symb. Comput. 2(2), 139–170 (1986)
Smith, H.J.S.: On the higher singularities of plane curves. Proc. Lond. Math. Soc. 6, 153–182 (1874)
Stanley, R.: Enumerative combinatorics II. Cambridge Univ. Press, Cambridge (1999)
Stolz, O.: Die Multiplicität der Schnittpunkte zweier algebraischer Curven. Math. Annalen 15, 122–160 (1879)
Tornero, J.M.: On Kummer extensions of the power series field. Math. Nachr. 281(10), 1511–1519 (2008)
Wall, C.T.C.: Singular points of plane curves. London Math. Society Student Texts, vol. 63. Cambridge Univ. Press, Cambridge (2004)
Zariski, O.: Algebraic surfaces. Springer-Verlag, 1935. A second supplemented edition appeared in 1971
Zariski, O.: Studies in equisingularity III. Saturation of local rings and equisingularity. Am. J. Math. 90, 961–1023 (1968)
Zariski, O.: Le problème des modules pour les branches planes. Avec un appendice de Bernard Teissier. Deuxième édition, Hermann, Paris, 1986. An English translation by Ben Lichtin was published in 2006 by the AMS with the title The moduli problem for plane branches
Acknowledgements
This research was partially supported by the French grants ANR-12-JS01-0002-01 SUSI, Labex CEMPI ANR-11-LABX-0007-01 and the Spanish grants MTM2012-36917-C03-0, MTM2013-45710-C2-2-P, MTM2016-76868-C2-1-P, MTM2016-80659-P. We are grateful to Herwig Hauser and Hana Kováčová for their translation of parts of Stolz’ paper. The third-named author is grateful to Mickaël Matusinski for the opportunity to explain our first proof of the Halphen–Stolz theorem at the Geometry seminar of the University of Bordeaux. We thank him and the anonymous referee for their remarks on a previous version of this article, which allowed us to improve our presentation. We also thank Antonio Campillo for the information he sent us about the uses of Abhyankar–Zariski inversion.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
García Barroso, E.R., González Pérez, P.D. & Popescu-Pampu, P. Variations on inversion theorems for Newton–Puiseux series. Math. Ann. 368, 1359–1397 (2017). https://doi.org/10.1007/s00208-016-1503-1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00208-016-1503-1
Keywords
- Branch
- Characteristic exponents
- Plane curve singularities
- Hypersurface singularities
- Quasi-ordinary series
- Lagrange inversion
- Newton-Puiseux series
Mathematics Subject Classification
- Primary 14B05
- 14H20
- 32S25