Skip to main content
Log in

The Dehn functions of Stallings–Bieri groups

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We show that the Stallings–Bieri groups, along with certain other Bestvina–Brady groups, have quadratic Dehn function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abrams, A., Brady, N., Dani, P., Duchin, M., Young, R.: Pushing fillings in right-angled Artin groups. J. Lond. Math. Soc. 87(2), 663–688 (2013)

  2. Amchislavska, M., Riley, T.: Lamplighters, metabelian groups, and horocyclic products of trees. To appear in L’Enseignement Mathématique. http://arxiv.org/abs/1405.1660

  3. Baumslag, G., Bridson, M.R., Miller III, C.F., Short, H.: Finitely presented subgroups of automatic groups and their isoperimetric functions. J. Lond. Math. Soc. 56(2), 292–304 (1997)

  4. Bestvina, M., Brady, N.: Morse theory and finiteness properties of groups. Invent. Math. 129, 445–470 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bieri, R.: Homological dimension of discrete groups. Mathematics Department, Queen Mary College, London. Queen Mary College Mathematics Notes (1976)

  6. Brady, N., Bridson, M.R., Forester, M., Shankar, K.: Snowflake groups, Perron-Frobenius eigenvalues and isoperimetric spectra. Geom. Topol. 13, 141–187 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bridson, M.R.: personal communication

  8. Bridson, M.R.: Doubles, finiteness properties of groups, and quadratic isoperimetric inequalities. J. Algebra 214, 652–667 (1999)

  9. Bridson, M.R.: The geometry of the word problem. In: Invitations to Geometry and Topology, vol. 7 of Oxf. Grad. Texts Math, pp. 29–91. Oxford University Press, Oxford (2002)

  10. Bridson, M.R., Haefliger, A.: Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer, Berlin (1999)

  11. Davis, M.W.: The geometry and topology of Coxeter groups. London Mathematical Society Monographs Series, vol. 32. Princeton University Press, Princeton (2008)

  12. Dison, W.: An isoperimetric function for Bestvina-Brady groups. Bull. Lond. Math. Soc. 40, 384–394 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dison, W., Elder, M., Riley, T.R., Young, R.: The Dehn function of Stallings’ group. Geom. Funct. Anal. 19, 406–422 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Druţu, C.: Filling in solvable groups and in lattices in semisimple groups. Topology 43, 983–1033 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gersten, S.M.: Finiteness properties of asynchronously automatic groups, in Geometric group theory (Columbus, OH, 1992), vol. 3, pp. 121–133. Ohio State Univ. Math. Res. Inst. Publ., de Gruyter, Berlin (1995)

  16. Gromov, M.: Asymptotic invariants of infinite groups. In: Geometric group theory, Vol. 2 (Sussex, 1991), vol. 182 of London Math. Soc. Lecture Note Ser., pp. 1–295 Cambridge University Press, Cambridge (1993)

  17. Groves, D.: personal communication

  18. Stallings, J.: A finitely presented group whose 3-dimensional integral homology is not finitely generated. Am. J. Math. 85, 541–543 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  19. Young, R.: The Dehn function of \({\rm SL}(n;{\mathbb{Z}})\). Ann. Math. 177(2), 969–1027 (2013)

Download references

Acknowledgments

The authors are grateful to Noel Brady for many valuable discussions related to this work, and to the referee, for helpful comments that have improved the paper. The second author was partially supported by NSF Grant DMS-1105765.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Forester.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carter, W., Forester, M. The Dehn functions of Stallings–Bieri groups. Math. Ann. 368, 671–683 (2017). https://doi.org/10.1007/s00208-016-1470-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1470-6

Keywords

Navigation