Skip to main content

A special Lagrangian type equation for holomorphic line bundles

Abstract

Let L be a holomorphic line bundle over a compact Kähler manifold X. Motivated by mirror symmetry, we study the deformed Hermitian–Yang–Mills equation on L, which is the line bundle analogue of the special Lagrangian equation in the case that X is Calabi–Yau. We show that this equation is the Euler-Lagrange equation for a positive functional, and that solutions are unique global minimizers. We provide a necessary and sufficient criterion for existence in the case that X is a Kähler surface. For the higher dimensional cases, we introduce a line bundle version of the Lagrangian mean curvature flow, and prove convergence when L is ample and X has non-negative orthogonal bisectional curvature.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Caffarelli, L.A.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. 130(1), 189–213 (1989)

  2. 2.

    Chen, J., Li, J., Tian, G.: Two-dimensional graphs moving by mean curvature flow. Acta Math. Sin. 18, 209–224 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations, III: functions of the eigenvalues of the Hessian. Acta. Math. 155(3–4), 261–301 (1985)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Chen, J.-Y., Warren, M., Yuan, Y.: A priori estimate for convex solutions to special Lagrangian equations and its application. Commun. Pure Appl. Math. 62, 583–595 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Evans, L.C.: Classical solutions of fully nonlinear, convex, second order ellpitic equations. Commun. Pure Appl. Math 25, 333–363 (1982)

    Article  MATH  Google Scholar 

  6. 6.

    Collins, T.C., Tosatti, V.: Kähler currents and null loci. Invent. Math. 202(3), 1167–1198 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Demailly, J.-P., Paun, M.: Numerical characterization of the Kähler cone of a compact Kähler manifold. Ann. Math. 159(3), 1247–1274 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Fang, H., Lai, M., Ma, X.: On a class of fully nonlinear flows in Kähler geometry. J. Reine Angew. Math. 653, 189–220 (2011)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Gu, H.L., Zhang, Z.H.: An extension of Mok’s theorem on the generalized Frankel conjecture. Sci. China Math. 53(5), 1253–1264 (2010)

  10. 10.

    Gross, M., Wilson, P.M.H.: Large complex structure limits of \(K3\) surfaces. J. Differ. Geom. 55(3), 475–546 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Harvey, R., Lawson, H.B.: Calibrated geometries. Acta Math. 148, 47–157 (1982)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31(1), 285–299 (1990)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Kontsevich, M.: Homological algebra of Mirror Symmetry. In: Proceedings of the International Congress of Mathematicians, Zuerich 1994, vol. I, pp. 120–139. Birkhauser, Basel (1995)

  14. 14.

    Kontsevich, M., Soibelman, Y.: Homological mirror symmetric and torus fibrations, symplectic geometry and mirror symmetry (Seoul 2000), pp. 203–263. World Scientific Publishing, River Edge, NJ (2001)

    Book  MATH  Google Scholar 

  15. 15.

    Krylov, N.V.: Boundedly nonhomogeneous elliptic and parabolic equations. Izvestia Akad. Nauk. SSSR 46, 487–523 (1982) [English translation in. Math. USSR Izv. 20(3), 459–492 (1983)]

  16. 16.

    Krylov, N.V.: Nonlinear elliptic and parabolic equations of the second order. Mathematics and its applications (Soviet Series), vol. 7, pp. xiv+462. D. Reidel Publishing Co., Dordrecht (1987). ISBN:90-277-2289-7

  17. 17.

    Krylov, N.V.: On the general notion of fully nonlinear second-order elliptic equations. Trans. Am. Math. Soc. 347, 857–895 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Krylov, N.V., Safonov, M.V.: A property of the solutions of parabolic equations with measurable coefficients (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 44, 161–175 (1980)

  19. 19.

    Leung, C., Yau, S.-T., Zaslow, E.: From special Lagrangian to Hermitian–Yang–Mills via Fourier-Mukai transform. Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999). AMS/IP Stud. Adv. Math., vol. 23, pp. 209–225. American Mathematical Society, Providence, RI (2001)

  20. 20.

    Marino, M., Minasian, R., Moore, G., Strominger, A.: Nonlinear instantons from supersymmetric p-Branes. arXiv:hep-th/9911206

  21. 21.

    Neves, A.: Finite time singularities for Lagrangian mean curvature flow. Ann. Math. 177(3), 1029–1076 (2013)

  22. 22.

    Pingali, V.: A generalized Monge-Ampère equation. arXiv:1205.1266 (preprint)

  23. 23.

    Pingali, V.: A fully nonlinear “Generalized Monge-Ampère” PDE on a torus. arXiv:1310.1656 (preprint)

  24. 24.

    Schoen, R., Wolfson, J.: Minimizing area among Lagrangian surfaces: the mapping problem. J. Differ. Geom. 58(1), 1–86 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Smoczyk, K.: Angle theorems for the Lagrangian mean curvature flow. Math. Z. 240, 849–883 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Smoczyk, K.: Longtime existence of the Lagrangian mean curvature flow. Calc. Var. Partial Differ. Equations 20, 25–46 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Smoczyk, K., Wang, M.-T.: Mean curvature flows of Lagrangians submanifolds with convex potentials. J. Differ. Geom. 62, 243–257 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Strominger, A., Yau, S.-T., Zaslow, E.: Mirror Symmetry is T-duality. Nucl. Phys. B 479(1–2), 243–259 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Thomas, R.P., Yau, S.-T.: Special Lagrangians, stable bundles and mean curvature flow. Commun. Anal. Geom. 10, 1075–1113 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Tosatti, V., Wang, Y., Weinkove, B., Yang, X.: \(C^{2,\alpha }\) estimates for nonlinear elliptic equations in complex and almost complex geometry. Calc. Var. Partial Differ. Equations 54(1), 431–453 (2015)

  31. 31.

    Tsui, M.-P., Wang, M.-T.: Mean curvature flows and isotopy of maps between spheres. Commun. Pure Appl. Math. 57, 1110–1126 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Wang, D.-K., Yuan, Y.: Hessian estimates for special Lagrangian equations with critical and supercritical phases in general dimensions. Am. J. Math. 136(2), 481–499 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Wang, D.-K., Yuan, Y.: Singular solutions to special Lagrangian equations with subcritical phases and minimal surface systems. Am. J. Math. 135, 1157–1177 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Wang, M.-T.: Long-time existence and convergence of graphic mean curvature flow in arbitrary codimension. Invent. Math. 148(3), 525–543 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Wang, Y.: On the \(C^{2,\alpha }\) regularity of the complex Monge-Ampère equation. Math. Res. Lett. 19(4), 939–946 (2012)

  36. 36.

    Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I. Commun. Pure Appl. Math. 31, 339–411 (1978)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to Murad Alim, Tristan C. Collins, Siu-Cheong Lau, Duong H. Phong, Valentino Tosatti and Mu-Tao Wang for many helpful discussions and comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adam Jacob.

Additional information

A. Jacob is supported in part by NSF Grant No. DMS-1204155.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jacob, A., Yau, ST. A special Lagrangian type equation for holomorphic line bundles. Math. Ann. 369, 869–898 (2017). https://doi.org/10.1007/s00208-016-1467-1

Download citation