Abstract
We construct the space of infinitesimal variations for the Strominger system and an obstruction space to integrability, using elliptic operator theory. We initiate the study of the geometry of the moduli space, describing the infinitesimal structure of a natural foliation on this space. The associated leaves are related to generalized geometry and correspond to moduli spaces of solutions of suitable Killing spinor equations on a Courant algebroid. As an application, we propose a unifying framework for metrics with holonomy \(\mathrm {SU}(3)\) and solutions of the Strominger system.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Abbati, M.C., Cirelli, R., Manià, A., Michor, P.W.: The Lie group of automorphisms of a principal bundle. J. Geom. Phys. 6, 215–235 (1989)
Alexandrov, B., Ivanov, S.: Vanishing theorems on hermitian manifolds. Differ. Geom. Appl. 14, 251–265 (2001)
Anderson, L.B., Gray, J., Sharpe, E.: Algebroids, heterotic moduli spaces and the Strominger system. JHEP 07, 37 (2014)
Andreas, B., Garcia-Fernandez, M.: Solutions of the Strominger system via stable bundles on Calabi-Yau threefolds. Commun. Math. Phys. 315(1), 153–168 (2012)
Baraglia, D.: Leibniz algebroids, twistings and exceptional generalized geometry. J. Geom. Phys. 62, 903–934 (2012)
Baraglia, D., Hekmati, P.: Transitive courant algebroids, string structures and T-duality. Adv. Theor. Math. Phy. 19(3), 613–672 (2015)
Becker, K., Tseng, L.: Heterotic Flux Compactifications and their moduli. Nucl. Phys. B 741, 162–179 (2006)
Becker, K., Tseng, L., Yau, S.T.: Moduli space of torsional manifolds. Nucl. Phys. B 786, 119–134 (2007)
Berline, N., Getzler, E., Vergne, M.: Heat kernels and dirac operators, Grundlehren text editions. Springer, New York (1992)
Bursztyn, H., Cavalcanti, G., Gualtieri, M.: Reduction of Courant algebroids and generalized complex structures. Adv. Math. 211(2), 726–765 (2007)
Calabi, E.: The space of Kähler metrics. Proc. Int. Congr. Math. Amst. 2, 206–207 (1954)
Candelas, P., Horowitz, G., Strominger, A., Witten, E.: Vacuum configurations for superstrings. Nucl. Phys. B 258, 46–74 (1985)
Chen, Z., Stienon, M., Xu, P.: On regular Courant algebroids. J. Symp. Geom. 11, 1–24 (2013)
Coimbra, A., Strickland-Constable, C., Waldram, D.: Supergravity as generalised geometry I: type II theories. JHEP 11, 91 (2011)
Coimbra, A., Minasian, R., Triedl, H., Waldram, D.: Generalized geometry for string corrections. JHEP 11, 160 (2014)
Cyrier, M., Lapan, J.M.: Towards the massless spectrum of non-Kähler heterotic compactifications. Adv. Theor. Math. Phys. 10, 853–877 (2007)
De la Ossa, X., Svanes, E.: Holomorphic bundles and the moduli space of \(N=1\) supersymmetric heterotic compactifications. JHEP 10, 123 (2014)
Donaldson, S.K.: Anti-self-dual Yang-Mills connections on a complex algebraic surface and stable vector bundles. Proc. Lond. Math. Soc. 50, 1–26 (1985)
Douglis, A., Niremberg, L.: Interior estimates for elliptic systems of partial differential equations. Comm. Pure App. Math. 8(4), 503–538 (1955)
Fei, T., Yau, S.-T.: Invariant solutions to the Strominger system on complex lie groups and their quotients. Commun. Math. Phys. 338(3), 1183–1195 (2015)
Fernández, M., Ivanov, S., Ugarte, L., Vassilev, D.: Non-Kähler heterotic string solutions with non-zero fluxes and non-constant dilaton. JHEP 6, 73 (2014)
Fernández, M., Ivanov, S., Ugarte, L., Villacampa, R.: Non-Kähler heterotic-string compactifications with non-zero fluxes and constant dilaton. Commun. Math. Phys. 288, 677–697 (2009)
Fino, A., Tomassini, A.: On astheno-Kähler metrics. J. Lond. Math. Soc. 83, 290–308 (2011)
Freed, D.: Determinants, torsion and strings. Commun. Math. Phys. 107, 483–513 (1986)
Fu, J.-X.: On non-Kähler Calabi-Yau Threefolds with Balanced Metrics. In: Proc. Int. Congress of Mathematicians, Hyderabad, India, vol. II, pp. 705–716. Hindustan Book Agency, New Delhi (2010)
Fu, J.-X., Li, J., Yau, S.-T.: Balanced metrics on non-Kähler Calabi-Yau threefolds. J. Differ. Geom. 90, 81–129 (2012)
Fu, J.-X., Yau, S.-T.: The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampère equation. J. Differ. Geom. 78, 369–428 (2008)
Fu, J.-X., Tseng, L.-S., Yau, S.-T.: Local heterotic torsional models. Commun. Math. Phys. 289, 1151–1169 (2009)
Fu, J.-X., Wang, Z., Wu, D.: Form-type Calabi-Yau equations. Math. Res. Lett. 17, 887–903 (2010)
Garcia-Fernandez, M.: Generalized connections and heterotic supergravity. Commun. Math. Phys. 332, 89–115 (2014)
Garcia-Fernandez, M., Tipler, C.: Deformations of complex structures and the coupled Kähler-Yang-Mills equations. J. Lond. Math. Soc. 89(3), 779–796 (2014)
Gauduchon, P.: Hermitian connections and Dirac operators. Boll. UMI 11-B(7), 257–288 (1997)
Goto, R.: Moduli spaces of topological calibrations, Calabi-Yau, hyperKähler, G2 and Spin(7) structures. Int. J. Math. 15(3), 211–257 (2004)
Green, M.B., Schwarz, J.H.: Anomaly cancellations in supersymmetric \(D = 10\) gauge theory and superstring theory. Phys. Lett. B 149, 117–122 (1984)
Gualtieri, M.: Generalized Complex Geometry, Ph.D. thesis, University of Oxford (2004). arXiv:math/0401221
Gualtieri, M.: Branes on Poisson varieties, The many facets of geometry, pp. 368–394. Oxford University Press, Oxford (2010)
Gualtieri, M.: Generalized Calabi-Yau manifolds. Q. J. Math 54, 281–308 (2003)
Huang, L.: On joint moduli spaces. Math. Ann. 302, 61–79 (1995)
Hull, C.: Superstring compactifications with torsion and space-time supersymmetry. In: Turin 1985 Proceedings “Superunification and Extra Dimensions”, pp. 347–375 (1986)
Ivanov, S.: Heterotic supersymmetry, anomaly cancellation and equations of motion. Phys. Lett. B 685(2–3), 190–196 (2010)
Ivanov, S., Papadopoulos, G.: Vanishing theorems and string backgrounds. Class. Quant. Grav. 18, 1089–1110 (2001)
Ivanov, S., Papadopoulos, G.: A no-go theorem for string warped compactifications. Phys. Lett. B 497, 309–316 (2001)
Kaledin, D., Verbitsky, M.: Non-hermitian Yang-Mills connections. Sel. Math. 4, 279–320 (1988)
Kim, H.J.: Curvatures and holomorphic vector bundles, Ph.D. thesis, University of California, Berkeley (1985)
Kobayashi, S.: Differential geometry of complex vector bundles. Princeton University Press, Princeton (1987)
Kobayashi, S., Nomizu, K.: Foundations of differential geometry, vol. I. Interscience Publishers, New York (1963)
Lawson, H., Michelsohn, M.: Spin geometry, vol. 38 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ (1989)
Lee, H.: Strominger’s System on non-Kähler hermitian Manifolds, Ph.D. thesis, University of Oxford (2011)
Li, J., Yau, S.-T.: Hermitian–Yang–Mills connections on non-Kähler manifolds, Mathematical aspects of string theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys., vol. 1, pp. 560–573. World Scientific Publishing, Singapore (1987)
Li, J., Yau, S.-T.: The existence of supersymmetric string theory with torsion. J. Differ. Geom. 70, 143–181 (2005)
Lockhart, R.B., Mc Owen, R.C.: On elliptic systems in \({{\mathbb{R}}}^n\). Acta Math. 150(1), 125–135 (1983)
Lockhart, R.B., Mc Owen, R.C.: Elliptic differential operators on non-compact manifolds. Ann. della Scuola Normale Superiore di Pisa 12(3), 409–447 (1985)
Lübcke, M., Teleman, A.: The Kobayashi-Hitchin correspondence. World Scientific Publishing Co. Inc., Singapore (1995)
Mackenzie, K.: General theory of Lie groupoids and Lie algebroids. London Mathematical Society Lecture Note Series, no. 213. Cambridge University Press, Cambridge (2005)
Martelli, D., Sparks, J.: Non-Kähler heterotic rotations. Adv. Theor. Math. Phys. 15(1), 131–174 (2011)
Matsuo, K., Takahashi, T.: On compact astheno-Kähler manifolds. Colloq. Math. 89(1), 213–221 (2001)
Melnikov, I., Sharpe, E.: On marginal deformations of \((0,2)\) non-linear sigma models. Phys. Lett. B 705, 529–534 (2011)
Michelsohn, M.L.: On the existence of special metrics in complex geometry. Acta Math. 149(1), 261–295 (1982)
Popovici, D.: Holomorphic deformations of balanced Calabi-Yau \({\partial }{\overline{\partial }}\)-Manifolds. arXiv:1304.0331 (preprint)
Rubio, R.: \(B_n\)-generalized geometry and \(G_2^2\)-structures. J. Geom. Phys. 73, 150–156 (2013)
Rubio, R.: Generalized geometry of type \(B_n\), Ph.D. thesis, University of Oxford (2014)
Sati, H., Schreiber, U., Stasheff, J.: Twisted differential string and fivebrane structures. Commun. Math. Phys. 315, 169–213 (2012)
Strominger, A.: Superstrings with torsion. Nucl. Phys. B 274(2), 253–284 (1986)
Tseng, L.S., Yau, S.-T.: Non-Kähler Calabi-Yau Manifolds, String-Math 2011. Proc. Symp. Pure Math. 85, 241–254 (2012)
Uhlenbeck, K., Yau, S.-T.: On the existence of Hermitian–Yang–Mills connections on stable bundles over compact Kähler manifolds. Commun. Pure Appl. Math. 39-S, 257–293 (1986)
Wang, M.: Parallel spinors and parallel forms. Ann. Global Anal. Geom. 7(1), 59–68 (1989)
Witt, F.: Special metric structures and closed forms, Ph.D. thesis, University of Oxford (2005)
Witt, F.: Calabi-Yau manifolds with B-fields. Rend. Sem. Mat. Univ. Politec. Torino 66, 1–21 (2008)
Yau, S.-T.: Calabi’s conjecture and some new results in algebraic geometry. Proc. Natl. Acad. Sci. USA 74, 1798–1799 (1977)
Yau, S.-T.: Complex geometry: Its brief history and its future. Sci. China Ser. A Math. 48, 47–60 (2005)
Yau, S.-T.: Metrics on complex manifolds. Sci. China Math. 53(3), 565–572 (2010)
Acknowledgments
We thank Luis Álvarez-Cónsul, Bjorn Andreas, Vestislav Apostolov, Henrique Bursztyn, Ryushi Goto, Marco Gualtieri, Nigel Hitchin, Laurent Meersseman, Xenia de la Ossa, Dan Popovici, Brent Pym and Eirik Svanes for useful discussions. Part of this work was undertaken while CT was visiting IMPA, UFRJ, CRM, during visits of MGF and CT to CIRGET, and of RR to EPFL and ICMAT. We would like to thank these very welcoming institutions for providing a nice and stimulating working environment.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Ngaiming Mok.
This Project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No. 655162. This work is partially supported by an ESF—Short Visit Grant 5717 within the framework of the ITGP network. MGF is supported by a Marie Sklodowska-Curie Grant and was initially supported by ICMAT Severo Ochoa Project SEV-2011-0087 and by the École Polytechnique Fédéral de Lausanne. RR is supported by IMPA and was initially supported by QGM through its partnership with the Mathematical Institute of Oxford. CT is partially supported by Agence Nationale de la Recherche—ANR Project EMARKS.
Rights and permissions
About this article
Cite this article
Garcia-Fernandez, M., Rubio, R. & Tipler, C. Infinitesimal moduli for the Strominger system and Killing spinors in generalized geometry. Math. Ann. 369, 539–595 (2017). https://doi.org/10.1007/s00208-016-1463-5
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00208-016-1463-5