Mathematische Annalen

, Volume 368, Issue 3–4, pp 1191–1225 | Cite as

Complete intersections: moduli, Torelli, and good reduction

  • A. Javanpeykar
  • D. Loughran


We study the arithmetic of complete intersections in projective space over number fields. Our main results include arithmetic Torelli theorems and versions of the Shafarevich conjecture, as proved for curves and abelian varieties by Faltings. For example, we prove an analogue of the Shafarevich conjecture for cubic and quartic threefolds and intersections of two quadrics.

Mathematics Subject Classification

11G35 14M10 14K30 14J50 14C34 14D23 



We are grateful to Giuseppe Ancona, Jean-Benoît Bost, Martin Bright, Fréderic Campana, Jean-Louis Colliot-Thélène, Bas Edixhoven, Jochen Heinloth, Marc Hindry, David Holmes, Ben Moonen, Laurent Moret-Bailly, Duco van Straten, Lenny Taelman, Olivier Wittenberg, and Kang Zuo for helpful discussions on several parts of this paper. Special thanks go to Olivier Benoist for very helpful discussions on complete intersections and level structure, Yohan Brunebarbe for his help on period maps and the proof of Theorem 2.8, and Angelo Vistoli for answering our questions on stacks and his help in proving Proposition 2.12. We are very grateful to the anonymous referee for useful comments. The first named author gratefully acknowledges the support of SFB/Transregio 45.


  1. 1.
    Abramovich, D.: Uniformity of stably integral points on elliptic curves. Invent. Math. 127(2), 307–317 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    André, Y.: On the Shafarevich and Tate conjectures for hyper-Kähler varieties. Math. Ann. 305(2), 205–248 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 4, 2nd edn. Springer, Berlin (2004)Google Scholar
  4. 4.
    Beauville, A.: Variétés de Prym et jacobiennes intermédiaires. Ann. Sci. École Norm. Sup. (4) 10(3), 309–391 (1977)Google Scholar
  5. 5.
    Beauville, A.: Some remarks on Kähler manifolds with \(c_{1}=0\). In: Classification of Algebraic and Analytic Manifolds (Katata, 1982), Progr. Math., vol. 39, pp. 1–26. Birkhäuser Boston, Boston (1983)Google Scholar
  6. 6.
    Beauville, A.: Non-rationality of the symmetric sextic Fano threefold. In: Geometry and Arithmetic, EMS Ser. Congr. Rep., pp. 57–60. Eur. Math. Soc., Zürich (2012)Google Scholar
  7. 7.
    Benoist, O.: Espace de modules d’intersections complètes lisses. Ph.D. thesisGoogle Scholar
  8. 8.
    Benoist, O.: Séparation et propriété de Deligne-Mumford des champs de modules d’intersections complètes lisses. J. Lond. Math. Soc. (2) 87(1), 138–156 (2013)Google Scholar
  9. 9.
    Benoist, O.: Quelques espaces de modules d’intersections complètes lisses qui sont quasi-projectifs. J. Eur. Math. Soc. 16(8), 1749–1774 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron Models. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 21. Springer, Berlin (1990)Google Scholar
  11. 11.
    Brunebarbe, Y.: Symmetric differentials and variations of hodge structures. J. Reine Angew. Math. (2016, to appear)Google Scholar
  12. 12.
    Cai, J.-X., Liu, W., Zhang, L.: Automorphisms of surfaces of general type with \(q\ge 2\) acting trivially in cohomology. Compos. Math. 149(10), 1667–1684 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Campana, F., Păun, M.: Orbifold generic semi-positivity: an application to families of canonically polarized manifolds. Ann. Inst. Fourier 65(2), 835–861 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Caporaso, L., Harris, J., Mazur, B.: Uniformity of rational points. J. Am. Math. Soc. 10(1), 1–35 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Carlson, J., Green, M., Griffiths, P., Harris, J.: Infinitesimal variations of Hodge structure. I. Composit. Math. 50(2–3), 109–205 (1983)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Carlson, J., Müller-Stach, S., Peters, C.: Period Mappings and Period Domains. Cambridge Studies in Advanced Mathematics, vol. 85. Cambridge University Press, Cambridge (2003)Google Scholar
  17. 17.
    Cassels, J.W.S.: An embedding theorem for fields. Bull. Austral. Math. Soc. 14(2), 193–198 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Catanese, F.M.E.: Infinitesimal Torelli theorems and counterexamples to Torelli problems. In: Topics in Transcendental Algebraic Geometry (Princeton, N.J., 1981/1982), Ann. of Math. Stud., vol. 106, pp. 143–156. Princeton Univ. Press, Princeton (1984)Google Scholar
  19. 19.
    Clemens, C.H., Griffiths, P.A.: The intermediate Jacobian of the cubic threefold. Ann. Math. 2(95), 281–356 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Conrad, B.: Arithmetic moduli of generalized elliptic curves. J. Inst. Math. Jussieu 6(2), 209–278 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Cornell, G., Silverman, J.H. (eds.) Arithmetic Geometry. Springer, New York (1986) [Papers from the conference held at the University of Connecticut, Storrs, Connecticut, July 30–August 10 (1984)]Google Scholar
  22. 22.
    de Jong, R., Rémond, G.: Conjecture de Shafarevitch effective pour les revêtements cycliques. Algebra Number Theory 5(8), 1133–1143 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Debarre, O.: Le théorème de Torelli pour les intersections de trois quadriques. Invent. Math. 95(3), 507–528 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Deligne, P.: Les intersections complètes de niveau de Hodge un. Invent. Math. 15, 237–250 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Demazure, M.: Automorphismes et déformations des variétés de Borel. Invent. Math. 39(2), 179–186 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Demazure, M., Grothendieck, A.: Schémas en groupes I, II, III (SGA 3). Lecture Notes in Math., vols. 151, 152, 153. Springer, New York (1970)Google Scholar
  27. 27.
    Dolgachev, I.V.: Classical Algebraic Geometry. Cambridge University Press, Cambridge (2012) (a modern view)Google Scholar
  28. 28.
    Donagi, R.: Group law on the intersection of two quadrics. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7(2), 217–239 (1980)Google Scholar
  29. 29.
    Edidin, D., Hassett, B., Kresch, A., Vistoli, A.: Brauer groups and quotient stacks. Am. J. Math. 123(4), 761–777 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73(3), 349–366 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Faltings, G.: Complements to Mordell. In: Rational Points (Bonn, 1983/1984), Aspects Math., vol. E6, pp. 203–227. Vieweg, Braunschweig (1984)Google Scholar
  32. 32.
    Flenner, H.: The infinitesimal Torelli problem for zero sets of sections of vector bundles. Math. Z. 193(2), 307–322 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Gabber, O., Liu, Q., Lorenzini, D.: Hypersurfaces in projective schemes and a moving lemma. Duke Math. J. 164(7), 1187–1270 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Gille, P., Moret-Bailly, L.: Actions algébriques de groupes arithmétiques. In: Torsors, étale Homotopy and Applications to Rational Points, London Math. Soc. Lecture Note Ser., vol. 405, pp. 231–249. Cambridge Univ. Press, Cambridge (2013)Google Scholar
  35. 35.
    Grauert, H., Remmert, R.: Coherent analytic sheaves. Grundlehren der Mathematischen Wissenschaften, vol. 265. Springer, Berlin (1984)Google Scholar
  36. 36.
    Grothendieck, A.: Revêtements étales et groupe fondamental (SGA I) Fasc. II: Exposés 6, 8 à 11, Séminaire de Géométrie Algébrique, vol. 1960/61. Institut des Hautes Études Scientifiques, Paris (1963)Google Scholar
  37. 37.
    Grothendieck, A.: Techniques de construction et théorèmes d’existence en géométrie algébrique. IV (FGA). Les schémas de Hilbert. In: Séminaire Bourbaki, vol. 6, pages Exp. No. 221, 249–276. Soc. Math. France, Paris (1995)Google Scholar
  38. 38.
    Harris, J.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 133. Springer, New York (1992)Google Scholar
  39. 39.
    Hartmann, A.: On rational points of varieties over local fields having a model with tame quotient singularities. Trans. Am. Math. Soc. 367(11), 8199–8227 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Javanpeykar, A.: Néron models and the arithmetic Shafarevich conjecture for certain canonically polarized surfaces. Bull. Lond. Math. Soc. 47(1), 55–64 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Javanpeykar, A., Loughran, D.: Good reduction of algebraic groups and flag varieties. Arch. Math. (Basel) 104(2), 133–143 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Javanpeykar, A., von Känel, R.: Szpiro’s small points conjecture for cyclic covers. Doc. Math. 19, 1085–1103 (2014)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Keel, S., Mori, S.: Quotients by groupoids. Ann. Math. (2) 145(1), 193–213 (1997)Google Scholar
  44. 44.
    Knutson, D.: Algebraic Spaces. Lecture Notes in Mathematics, vol. 203. Springer, Berlin (1971)Google Scholar
  45. 45.
    Lang, S.: Hyperbolic and diophantine analysis. Bull. Am. Math. Soc. (N.S.) 14(2), 159–205 (1986)Google Scholar
  46. 46.
    Laumon, G., Moret-Bailly, L.: Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 39. Springer, Berlin (2000)Google Scholar
  47. 47.
    Liu, Q.: Algebraic geometry and arithmetic curves. Oxford Graduate Texts in Mathematics, vol. 6. Oxford University Press, Oxford (2002)Google Scholar
  48. 48.
    Matsumura, H., Monsky, P.: On the automorphisms of hypersurfaces. J. Math. Kyoto Univ. 3, 347–361 (1963/1964)Google Scholar
  49. 49.
    Mazur, B.: Arithmetic on curves. Bull. Am. Math. Soc. 14(2), 207–259 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Milne, J.S.: Étale Cohomology. Princeton Mathematical Series, vol. 33. Princeton University Press, Princeton (1980)Google Scholar
  51. 51.
    Moret-Bailly, L.: Pinceaux de variétés abéliennes. Astérisque 129, 266 (1985)Google Scholar
  52. 52.
    Mukai, S.: Numerically trivial involutions of Kummer type of an Enriques surface. Kyoto J. Math. 50(4), 889–902 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Mumford, D.: Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5. Published for the Tata Institute of Fundamental Research, Bombay; by Hindustan Book Agency, New Delhi (2008)Google Scholar
  54. 54.
    Noohi, B.: Fundamental groups of algebraic stacks. J. Inst. Math. Jussieu 3(1), 69–103 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Olsson, M.C.: \({\rm Hom}\)-stacks and restriction of scalars. Duke Math. J. 134(1), 139–164 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Paršin, A.N.: Minimal models of curves of genus \(2\), and homomorphisms of abelian varieties defined over a field of finite characteristic. Izv. Akad. Nauk SSSR Ser. Mat. 36, 67–109 (1972)MathSciNetGoogle Scholar
  57. 57.
    Peters, C.A.M.: Holomorphic automorphisms of compact Kähler surfaces and their induced actions in cohomology. Invent. Math. 52(2), 143–148 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Poonen, B.: Varieties without extra automorphisms. III. Hypersurfaces. Finite Fields Appl. 11(2), 230–268 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Popp, H.: On moduli of algebraic varieties. I. Invent. Math. 22, 1–40 (1973/1974)Google Scholar
  60. 60.
    Rapoport, M.: Complément à l’article de P. Deligne, “La conjecture de Weil pour les surfaces \(K3\)”. Invent. Math. 15, 227–236 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Reid, M.: The complete intersection of two or more quadrics. Ph.D. thesisGoogle Scholar
  62. 62.
    Rizov, J.: Moduli stacks of polarized \(K3\) surfaces in mixed characteristic. Serdica Math. J. 32(2–3), 131–178 (2006)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Rydh, D.: Existence and properties of geometric quotients. J. Algebr. Geom. 22(4), 629–669 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Scholl, A.J.: A finiteness theorem for del Pezzo surfaces over algebraic number fields. J. Lond. Math. Soc. (2) 32(1), 31–40 (1985)Google Scholar
  65. 65.
    Selberg, A.: On discontinuous groups in higher-dimensional symmetric spaces. In: Contributions to Function Theory (Internat. Colloq. Function Theory, Bombay, 1960), pp. 147–164. Tata Institute of Fundamental Research, Bombay (1960)Google Scholar
  66. 66.
    Serre, J.-P.: Lectures on the Mordell–Weil Theorem, 3rd edn. Aspects of Mathematics, 3rd edn. Vieweg & Sohn, Braunschweig (1997)CrossRefGoogle Scholar
  67. 67.
    Serre, J.-P.: Galois Cohomology. Springer Monographs in Mathematics. Springer, Berlin (2002)Google Scholar
  68. 68.
    Shafarevich, I.R.: Algebraic number fields. In: Proc. Internat. Congr. Mathematicians (Stockholm, 1962), pp. 163–176. Inst. Mittag-Leffler, Djursholm (1963)Google Scholar
  69. 69.
    Silverman, J.H.: The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, vol. 106, 2nd edn. Springer, Dordrecht (2009)Google Scholar
  70. 70.
    The Stacks Project Authors. Stacks Project. (2015)
  71. 71.
    Szendrői, B.: Some finiteness results for Calabi–Yau threefolds. J. Lond. Math. Soc. (2) 60(3), 689–699 (1999)Google Scholar
  72. 72.
    Viehweg, E.: Quasi-projective Moduli for Polarized Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 30. Springer, Berlin (1995)Google Scholar
  73. 73.
    Voisin, C.: Hodge Theory and Complex Algebraic Geometry. I, Cambridge Studies in Advanced Mathematics, vol. 76. Cambridge University Press, Cambridge (2002)Google Scholar
  74. 74.
    Voisin, C.: Hodge Theory and Complex Algebraic Geometry. II, Cambridge Studies in Advanced Mathematics, vol. 77. Cambridge University Press, Cambridge (2003)Google Scholar
  75. 75.
    Wittenberg, O.: Letter to Colliot-Thélène (2013)Google Scholar
  76. 76.
    Wittenberg, O.: Intersections de deux quadriques et pinceaux de courbes de genre 1. Lecture Notes in Mathematics, vol. 1901. Springer, Berlin (2007)Google Scholar
  77. 77.
    Zuo, K.: On the negativity of kernels of Kodaira–Spencer maps on Hodge bundles and applications. Asian J. Math. 4(1), 279–301 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institut für MathematikJohannes Gutenberg-Universität MainzMainzGermany
  2. 2.Institut für Algebra, Zahlentheorie und Diskrete MathematikLeibniz Universität HannoverHannoverGermany

Personalised recommendations