Skip to main content
Log in

A surface of maximal canonical degree

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

It is known since the 1970s from a paper of Beauville that the degree of the rational canonical map of a smooth projective algebraic surface of general type is at most 36. Though it has been conjectured that a surface with optimal canonical degree 36 exists, the highest canonical degree known earlier for a minimal surface of general type was 16 by Persson. The purpose of this paper is to give an affirmative answer to the conjecture by providing an explicit surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beauville, A.: L’application canonique pour les surfaces de type général. Inv. Math. 55, 121–140 (1979)

  2. Blasius, D., Rogawski, J.: Cohomology of congruence subgroups of \(SU(2,1)^p\) and Hodge cycles on some special complex hyperbolic surfaces. In: Regulators in Analysis, Geometry and Number Theory, pp. 1–15. Birkhäuser Boston (2000)

  3. Calabi, E., Vesentini, E.: On compact locally symmetric Kähler manifolds. Ann. Math. 71, 472–507 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cartwright, D., Steger, T.: Enumeration of the \(50\) fake projective planes. C. R. Acad. Sci. Paris Ser. 1(348), 11–13 (2010). http://www.maths.usyd.edu.au/u/donaldc/fakeprojectiveplanes/

  5. Deligne, P., Mostow, G.D.: Commensurabilities among lattices in \( PU(1,n)\). In: Annals of Mathematics Studies, vol. 132. Princeton University Press, Princeton (1993)

  6. Deraux, M., Parker, J.R., Paupert, J.: New non-arithmetic complex hyperbolic lattices. Invent. Math. 203, 681–771 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Du, R., Gao, Y.: Canonical maps of surfaces defined on abelian covers. Asian J. Math. 18, 219–228 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Galkin, S., Katzarkov, L., Mellit, A., Shinder, E.: Derived categories of Keum’s fake projective planes. Adv. Math. 278, 238–253 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hambleton, I., Lee, R.: Finite group actions on \(P^2(\mathbb{C})\). J. Algebra 116, 227–242 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hirzebruch, F.: Arrangements of lines and algebraic surfaces. In: Arithmetic and Geometry, vol II, pp. 113–140. Progr. Math., vol. 36. Birkhäuser, Boston (1983)

  11. Keum, J.: A vanishing theorem on fake projective planes with enough automorphisms. arXiv:1407.7632v1

  12. Lai, C.-J., Yeung, S.-K.: Exceptional collection of objects on some fake projective planes (submitted). http://www.math.purdue.edu/~yeung/papers/FPP-van_r

  13. Mumford, D.: An algebraic surface with \(K\) ample, \(K^2=9\), \(p_g=q=0\). Am. J. Math. 101, 233–244 (1979)

    Article  MATH  Google Scholar 

  14. Pardini, R.: Canonical images of surfaces. J. Reine Angew. Math. 417, 215–219 (1991)

    MathSciNet  MATH  Google Scholar 

  15. Persson, U.: Double coverings and surfaces of general type. In: Olson, L.D. (ed.) Algebraic Geometry. Lecture Notes in Mathematics, vol. 732, pp. 168–175. Springer, Berlin (1978)

  16. Prasad, G., Yeung, S.-K.: Fake projective planes. Inv. Math. 168(2007), 321–370 (2007). (Addendum, ibid 182, 213–227 (2010))

  17. Rémy, R.: Covolume des groupes S-arithmétiques et faux plans projectifs. In: d’après Mumford, P., Klingler, Y., Prasad, Y. (eds.) Séminaire Bourbaki, 60ème année, 2007–2008, no. 984

  18. Reznikov, A.: Simpsons theory and superrigidity of complex hyperbolic lattices. C. R. Acad. Sci. Paris Sr. I Math. 320, 1061–1064 (1995)

  19. Rogawski, J.: Automorphic representations of the unitary group in three variables. Ann. Math. Stud. 123 (1990)

  20. Su, J.C.: Transformation groups on cohomology projective spaces. Trans. Am. Math. Soc. 106, 305–318 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tan, S.-L.: Surfaces whose canonical maps are of odd degrees. Math. Ann. 292, 13–29 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wilczyński, D.M.: Group actions on the complex projective plane. Trans. Am. Math. Soc. 303, 707–731 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xiao, G.: Algebraic surfaces with high canonical degree. Math. Ann. 274, 473–483 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yau, S.-T.: Calabi’s conjecture and some new results in algebraic geometry. Proc. Natl. Acad. Sci. USA 74, 1798–1799 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yeung, S.-K.: Integrality and arithmeticity of co-compact lattices corresponding to certain complex two ball quotients of Picard number one. Asian J. Math. 8, 104–130 (2004). (Erratum. Asian J. Math. 13(2009), 283–286)

  26. Yeung, S.-K.: Classification and construction of fake projective planes. In: Handbook of Geometric Analysis, vol. 2, pp. 391–431. Adv. Lect. Math. (ALM), vol. 13. Int. Press, Somerville (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai-Kee Yeung.

Additional information

Communicated by Ngaiming Mok.

S. Yeung was partially supported by a grant from the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeung, SK. A surface of maximal canonical degree. Math. Ann. 368, 1171–1189 (2017). https://doi.org/10.1007/s00208-016-1450-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1450-x

Mathematics Subject Classification

Navigation