Nonlinear commutators for the fractional p-Laplacian and applications

Abstract

We prove a nonlinear commutator estimate concerning the transfer of derivatives onto testfunctions for the fractional p-Laplacian. This implies that solutions to certain degenerate nonlocal equations are higher differentiable. Also, weakly fractional p-harmonic functions which a priori are less regular than variational solutions are in fact classical. As an application we show that sequences of uniformly bounded \(\frac{n}{s}\)-harmonic maps converge strongly outside at most finitely many points.

This is a preview of subscription content, log in to check access.

Notes

  1. 1.

    This is true if \(\frac{n}{t_0} \ge 2\), since then \([f]_{W^{t_0,\frac{n}{t_0}}} \le \Vert (-\Delta ) ^{\frac{t_0}{2}} f \Vert _{\frac{n}{t_0}}\). If \(\frac{n}{t_0} < 2\) one has to adapt the estimate, but the results remains true.

References

  1. 1.

    Adams, D.R.: A note on Riesz potentials. Duke Math. J. 42(4), 765–778 (1975)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Bjorland, C., Caffarelli, L., Figalli, A.: Non-local gradient dependent operators. Adv. Math. 230(4–6), 1859–1894 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Blatt, S., Reiter, Ph., Schikorra, A.: Harmonic analysis meets critical knots (stationary points of the moebius energy are smooth). Trans. AMS (2014, accepted)

  4. 4.

    Bourgain, J., Brézis, H., Mironescu, P.: Another look at sobolev spaces. Optimal control and partial differential equations, pp. 439-455 (2001)

  5. 5.

    Brasco, L., Lindgren, E.: Higher sobolev regularity for the fractional \(p\)-Laplace equation in the superquadratic case (2015, preprint). arXiv:1508.01039

  6. 6.

    Bucur, C., Valdinoci, E.: Nonlocal diffusion and applications (2015, preprint). arXiv:1504.08292

  7. 7.

    Da Lio, F.: Fractional harmonic maps into manifolds in odd dimension \(n {\>} 1\). Calc. Var. Partial Differ. Equ. 48(3–4), 421–445 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Da Lio, F.: Compactness and bubbles analysis for half-harmonic maps into spheres. Ann Inst. Henri Poincaré, Analyse non linèaire 32, 201–224 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Da Lio, F., Rivière, T.: Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps. Adv. Math. 227(3), 1300–1348 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Da Lio, F., Rivière, T.: Three-term commutator estimates and the regularity of 1/2-harmonic maps into spheres. Anal. Partial Differ. Equ. 4(1), 149–190 (2011)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Di Castro, A., Kuusi, T., Palatucci, G.: Local behaviour of fractional \(p\)-minimizers (2014, preprint)

  12. 12.

    Di Castro, A., Kuusi, T., Palatucci, G.: Nonlocal harnack inequalities. J. Funct. Anal. 267, 1807–1836 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Grafakos, L.: Modern Fourier Analysis, Graduate Texts in Mathematics, vol. 250, 2nd edn. Springer, New York (2009)

    Google Scholar 

  15. 15.

    Iannizzotto, A., Mosconi, S., Squassina, M.: Global hölder regularity for the fractional p-laplacian. arXiv:1411.2956 (2014)

  16. 16.

    Iwaniec, T.: \(p\)-harmonic tensors and quasiregular mappings. Ann. Math. (2) 136(3), 589–624 (1992)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Iwaniec, T., Sbordone, C.: Weak minima of variational integrals. J. Reine Angew. Math. 454, 143–161 (1994)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Kuusi, T., Mingione, G., Sire, Y.: A fractional Gehring lemma, with applications to nonlocal equations. Rend. Lincei Mat. Appl. 25, 345–358 (2014)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Kuusi, T., Mingione, G., Sire, Y.: Nonlocal equations with measure data. Commun. Math. Phys. 337, 1317–1368 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Kuusi, T., Mingione, G., Sire, Y.: Nonlocal self-improving properties. Anal. PDE 8, 57–114 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Schikorra, A.: Epsilon-regularity for systems involving non-local, antisymmetric operators (2012, preprint)

  22. 22.

    Schikorra, A.: Regularity of n/2-harmonic maps into spheres. J. Differ. Equ. 252, 1862–1911 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Schikorra, A.: Integro-differential harmonic maps into spheres. Commun. Partial Differ Equ. 40(1), 506–539 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Triebel, H.: Theory of Function Spaces, Monographs in Mathematics, vol. 78. Birkhäuser, Basel (1983)

    Google Scholar 

  25. 25.

    Vazquez, J.-L.: The dirichlet problem for the fractional p-laplacian evolution equation (2015, preprint). arXiv:1506.00210

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Armin Schikorra.

Appendix A: Useful tools

Appendix A: Useful tools

The following Lemma is used to restrict the fractional p-Laplacian to smaller sets.

Lemma 8.1

(Localization lemma) Let \(\Omega _1 \Subset \Omega _2 \Subset \Omega _3 \Subset \Omega \subset \mathbb {R}^n\) be open sets so that \(\mathrm{dist\,}(\Omega _1,\Omega _2^c), \mathrm{dist\,}(\Omega _2,\Omega _3^c), \mathrm{dist\,}(\Omega _3,\Omega ^c) > 0\). Let \(s \in (0,1)\), \(p \in [2,\infty )\).

For any \(u \in W^{s,p}(\Omega )\) there exists \(\tilde{u} \in W^{s,p}(\mathbb {R}^n)\) so that

  1. (1)

    \(\tilde{u} - u \equiv const\) in \(\Omega _1\)

  2. (2)

    \(\mathrm{supp\,}\tilde{u} \subset \Omega _2\)

  3. (3)

    \([\tilde{u}]_{W^{s,p}(\mathbb {R}^n)} \precsim \ [u]_{W^{s,p}(\Omega )}\)

  4. (4)

    For any \(t \in (2s-1,s)\),

    $$\begin{aligned} \Vert (-\Delta )^{s}_{p,\Omega _3} \tilde{u}\Vert _{(W^{t,p}_0(\Omega _3))^*} \precsim \Vert (-\Delta )^{s}_{p,\Omega } u\Vert _{(W^{t,p}_0(\Omega ))^*} + [u]_{W^{s,p}(\Omega )}^{p-1}. \end{aligned}$$

The constants are uniform in u and depend only on stp and the sets \(\Omega _1\), \(\Omega _2\), \(\Omega _3\), and \(\Omega \).

Proof

Let \(\Omega _1 \Subset \Omega \), let \(\eta \equiv \eta _{\Omega _1} \in C_c^\infty (\Omega _2)\), \(\eta _{\Omega _1} \equiv 1\) on \(\Omega _1\). We set

$$\begin{aligned} \tilde{u} := \eta _{\Omega _1}(u-(u)_{\Omega _1}). \end{aligned}$$

Clearly \(\tilde{u}\) satisfies property (1) and (2). We have property (3), too:

$$\begin{aligned}{}[\tilde{u}]_{W^{s,p}(\mathbb {R}^n)} \precsim [u]_{W^{s,p}(\Omega )}. \end{aligned}$$

We write

$$\begin{aligned} \tilde{u}(x)-\tilde{u}(y) = \underbrace{\eta (x) (u(x)-u(y))}_{a(x,y)} + \underbrace{(\eta (x)-\eta (y)) (u(y)-(u)_{\Omega _1})}_{b(x,y)}. \end{aligned}$$

Setting

$$\begin{aligned} T(a) := |a|^{p-2} a, \end{aligned}$$

observe that

$$\begin{aligned} |T(a+b) - T(a)| \precsim |b| \left( |a|^{p-2} + |b|^{p-2} \right) . \end{aligned}$$

Also note that

$$\begin{aligned} T(a(x,y)) = \eta ^{p-1}(x) |u(x)-u(y)|^{p-2}(u(x)-u(y)) \end{aligned}$$

We thus have for any \(\varphi \in C_c^\infty (\Omega _3)\),

$$\begin{aligned}&(-\Delta )^{s}_{p,\Omega }\tilde{u}[\varphi ]\\&\quad =\int _{\Omega } \int _{\Omega } \frac{|\tilde{u}(x)-\tilde{u}(y)|^{p-2}(\tilde{u}(x)-\tilde{u}(y))\ (\varphi (x)-\varphi (y))}{|x-y|^{n+sp}}\ dx\ dy\\&\quad = \int _{\Omega } \int _{\Omega } \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))\ \eta ^{p-1}(x)\ (\varphi (x)-\varphi (y))}{|x-y|^{n+sp}}\ dx\ dy\\&\qquad +\int _{\Omega } \int _{\Omega } \frac{(T(a+b) - T(a))\ (\varphi (x)-\varphi (y))}{|x-y|^{n+sp}}\ dx\ dy\\&\quad = \int _{\Omega } \int _{\Omega } \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))\ ( \eta ^{p-1}(x) \varphi (x)- \eta ^{p-1}(y) \varphi (y))}{|x-y|^{n+sp}}\ dx\ dy\\&\qquad -\int _{\Omega } \int _{\Omega } \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))\ (\eta ^{p-1}(x)-\eta ^{p-1}(y))\varphi (y)}{|x-y|^{n+sp}}\ dx\ dy\\&\qquad +\int _{\Omega } \int _{\Omega } \frac{(T(a+b) - T(a))\ (\varphi (x)-\varphi (y))}{|x-y|^{n+sp}}\ dx\ dy\\&\quad = (-\Delta )^{s}_{p,\Omega }u[\eta ^{p-1}\ \varphi ]\\&\quad \quad -\int _{\Omega } \int _{\Omega } \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))\ (\eta ^{p-1}(x)-\eta ^{p-1}(y))\varphi (y)}{|x-y|^{n+sp}}\ dx\ dy\\&\quad \quad +\int _{\Omega } \int _{\Omega } \frac{(T(a+b) - T(a))\ (\varphi (x)-\varphi (y))}{|x-y|^{n+sp}}\ dx\ dy. \end{aligned}$$

Consequently,

$$\begin{aligned}&| (-\Delta )^{s}_{p,\Omega } \tilde{u}[\varphi ]|\\&\quad \precsim \Vert (-\Delta )^{s}_{p,\Omega }u\Vert _{(W^{t,p}_0(\Omega ))^*}\ [\eta ^{p-1} \varphi ]_{W^{t,p}(\Omega )}\\&\quad \quad + \int _{\Omega } \int _{\Omega } \frac{|u(x)-u(y)|^{p-1}\ |\eta ^{p-1}(x)-\eta ^{p-1}(y)|\ |\varphi (y)|}{|x-y|^{n+sp}}\ dx\ dy\\&\quad \quad +\int _{\Omega } \int _{\Omega } \frac{|\eta (x)-\eta (y)|\ |u(y)-(u)_{\Omega _1}|\ \eta (x)^{p-2}\ |u(x)-u(y)|^{p-2}\ |\varphi (x)-\varphi (y)|}{|x-y|^{n+sp}}\ dx\ dy\\&\quad \quad +\int _{\Omega } \int _{\Omega } \frac{|\eta (x)-\eta (y)|^{p-1}\ |u(y)-(u)_{\Omega _1}|^{p-1}\ |\varphi (x)-\varphi (y)|}{|x-y|^{n+sp}}\ dx\ dy. \end{aligned}$$

That is for any \(t < s\)

$$\begin{aligned}&| (-\Delta )^{s}_{p,\Omega } \tilde{u}[\varphi ]|\\&\quad \precsim \Vert (-\Delta )^{s}_{p,\Omega }u\Vert _{(W^{t,p}_0(\Omega ))^*}\ [\eta ^{p-1} \varphi ]_{W^{t,p}(\Omega )}\\&\quad \quad + [u]_{W^{s,p}(\Omega )}^{p-1}\ \left( \int _{\Omega } \int _{\Omega } \frac{|\eta ^{p-1}(x)-\eta ^{p-1}(y)|^p\ |\varphi (y)|^p}{|x-y|^{n+sp}}\ dx\ dy \right) ^{\frac{1}{p}}\\&\quad \quad +[\varphi ]_{W^{t,p}(\Omega )}\ [u]_{W^{s,p}(\Omega )}^{p-2} \left( \int _{\Omega } \int _{\Omega _2} \frac{|\eta (x)-\eta (y)|^{p}\ |u(y)-(u)_{\Omega _1}|^p}{|x-y|^{n+(2s-t)p}}\ dx\ dy \right) ^{\frac{1}{p}}\\&\quad \quad +[\varphi ]_{W^{t,p}(\Omega )} \left( \int _{\Omega } \int _{\Omega _2} \frac{|\eta (x)-\eta (y)|^{p}\ |u(y)-(u)_{\Omega _1}|^p}{|x-y|^{n+(2s-t)p}}\ dx\ dy \right) ^{\frac{p-1}{p}}. \end{aligned}$$

Since \(\eta \) is bounded and Lipschitz, \(\mathrm{supp\,}\eta \subset \Omega _2\), and \(\varphi \in C_c^\infty (\Omega _3)\) we have that

$$\begin{aligned}{}[\eta ^{p-1} \varphi ]_{W^{t,p}(\Omega )} \precsim [\varphi ]_{W^{t,p}(\mathbb {R}^n)}. \end{aligned}$$

Also, choosing some bounded \(\Omega _4 \Subset \Omega \) so that \(\Omega _3 \Subset \Omega _4\),

$$\begin{aligned}&\int _{\Omega } \int _{\Omega } \frac{|\eta ^{p-1}(x)-\eta ^{p-1}(y)|^p\ |\varphi (y)|^p}{|x-y|^{n+sp}}\ dx\ dy\\&\quad \precsim \int _{\Omega _3} \int _{\Omega _4} |x-y|^{(1-s)p-n}\ \ dx\ |\varphi (y)|^p dy\\&\quad \quad +\int _{\Omega _3} \int _{\mathbb {R}^n\backslash \Omega _4} |x-y|^{-n-sp}\ \ dx\ |\varphi (y)|^p dy\\&\quad \precsim \Vert \varphi \Vert _{p}^p \precsim [\varphi ]_{W^{t,p}(\mathbb {R}^n)}^p. \end{aligned}$$

Finally, using Lipschitz continuity of \(\eta \) and that \(2s-1 < t < s\)

$$\begin{aligned}&\int _{\Omega } \int _{\Omega _2} \frac{|\eta (x)-\eta (y)|^{p}\ |u(y)-(u)_{\Omega _1}|^p}{|x-y|^{n+(2s-t)p}}\ dx\ dy\\&\quad \precsim \int _{\Omega _3} |u(y)-(u)_{\Omega _1}|^p \int _{\Omega _2} |x-y|^{-n+(t+1-2s)p}\ dx\ dy\\&\quad \quad +\int _{\Omega \backslash \Omega _3} |u(y)-(u)_{\Omega _1}|^p \int _{\Omega _2} \frac{1 }{|x-y|^{n+sp}}\ dx\ dy\\&\quad \precsim \int _{\Omega _1} \int _{\Omega _3} |u(y)-u(z)|^p\ dy\ dz\\&\quad \quad +\int _{\Omega _1} \int _{\Omega \backslash \Omega _3} |u(y)-u(z)|^p \int _{\Omega _2} \frac{1 }{|x-y|^{n+sp}}\ dx\ dy\ dz\\ \end{aligned}$$

Note that for \(x,z \in \Omega _2\) and \(y \in \Omega _3^c\) we have that \(|x-y| \approx |y-z|\), and since \(\Omega _1,\Omega _2,\Omega _3\) are bounded we then have

$$\begin{aligned} \int _{\Omega } \int _{\Omega _2} \frac{|\eta (x)-\eta (y)|^{p}\ |u(y)-(u)_{\Omega _1}|^p}{|x-y|^{n+(2s-t)p}}\ dx\ dy \precsim [u]_{W^{s,p}(\Omega )}. \end{aligned}$$

Thus we have shown that for any \(\varphi \in C_c^\infty (\Omega _3)\),

$$\begin{aligned} | (-\Delta )^{s}_{p,\Omega } \tilde{u}[\varphi ]| \precsim \left( \Vert (-\Delta )^{s}_{p,\Omega }u\Vert _{(W^{t,p}_0(\Omega ))^*} +[u]_{W^{s,p}(\Omega )}^{p-1} \right) \ [\varphi ]_{W^{t,p}(\mathbb {R}^n)}. \end{aligned}$$

Since moreover, \(\mathrm{supp\,}\tilde{u} \subset \Omega _2\), for any \(\varphi \in C_c^\infty (\Omega _3)\),

$$\begin{aligned} | (-\Delta )^{s}_{p,\Omega _3} \tilde{u}[\varphi ]| \precsim | (-\Delta )^{s}_{p,\Omega } \tilde{u}[\varphi ]| + [u]_{W^{s,p}(\Omega )}^{p-1}\ [\varphi ]_{W^{t,p}(\mathbb {R}^n)}, \end{aligned}$$

we get the claim. \(\square \)

The next Lemma estimates the \(W^{s,p}\)-norm in terms of the fractional p-Laplacian.

Lemma 8.2

Let \(B \subset \mathbb {R}^n\) be a ball and 4B the concentric ball with four times the radius. Then for any \(\delta > 0\), \([u]_{W^{s,p}(B)}^{p} \) can be estimated by

$$\begin{aligned}&\delta ^p [u]_{W^{s,p}(4B)}^{p}\\&\quad + \frac{C}{\delta ^{p'}} \left( \sup _{\varphi } \int _{4B}\int _{4B} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))\ (\varphi (x)-\varphi (y))}{|x-y|^{n+sp}}\ dx \ dy \right) ^{\frac{p}{p-1}}\\&\quad + \frac{C}{\delta ^{p'}}\ \mathrm{diam\,}(B)^{-sp}\ \int \limits _{4B} |u(x)-(u)_B|^p\ dx \end{aligned}$$

where the supremum is over all \(\varphi \in C_c^\infty (2B)\) and \([\varphi ]_{W^{s,p}(\mathbb {R}^n)} \le 1\).

Proof

Let \(\eta \in C_c^\infty (2B)\), \(\eta \equiv 1\) in B be the usual cutoff function in 2B.

$$\begin{aligned} \psi (x) := \eta (x) (u(x)-(u)_{B}), \quad \text{ and } \quad \varphi (x) := \eta ^2(x) (u(x)-(u)_{B}). \end{aligned}$$

Then,

$$\begin{aligned}{}[\psi ]_{W^{s,p}(\mathbb {R}^n)} + [\varphi ]_{W^{s,p}(\mathbb {R}^n)} \precsim [u]_{W^{s,p}(2B)}. \end{aligned}$$
(8.1)

We have

$$\begin{aligned}{}[u]_{W^{s,p}(B)}^{p} \le \int \limits _{4B}\int \limits _{4B} \frac{|u(x)-u(y)|^{p-2} (\psi (x)-\psi (y))\ (\psi (x)-\psi (y))}{|x-y|^{n+sp}} dx\ dy. \end{aligned}$$

Now we observe

$$\begin{aligned} (\psi (x) - \psi (y))^2= & {} (\psi (x) - \psi (y)) (\eta (x) - \eta (y))(u(x)-(u)_{B})\\&+ \psi (x)(\eta (y)-\eta (x))\ (u(x)-u(y))\\&+ (\varphi (x) - \varphi (y))(u(x)-u(y)). \end{aligned}$$

That is,

$$\begin{aligned}{}[u]_{W^{s,p}(B)}^{p} \precsim I + II + III, \end{aligned}$$

with

$$\begin{aligned} I:= & {} \int \limits _{4B}\int \limits _{4B} \frac{|u(x)-u(y)|^{p-2} (u(x)-u(y))(\varphi (x)-\varphi (y))}{|x-y|^{n+sp}} dx\ dy,\\ II:= & {} \int \limits _{4B}\int \limits _{4B} \frac{|u(x)-u(y)|^{p-2} |\eta (x)-\eta (y)|\ |\psi (x)-\psi (y)|}{|x-y|^{n+sp}}\ |u(x)-(u)_B|\ dx\ dy,\\ III:= & {} \int \limits _{4B}\int \limits _{4B} \frac{|u(x)-u(y)|^{p-1} |\eta (x)-\eta (y)|}{|x-y|^{n+sp}}\ |\psi (x)| dx\ dy. \end{aligned}$$

With (8.1),

$$\begin{aligned} I \le [u]_{W^{s,p}(4B)}\ \sup _{[\varphi ]_{W^{s,p}(\mathbb {R}^n)} \le 1} \int \limits _{4B}\int \limits _{4B} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))\ (\varphi (x)-\varphi (y))}{|x-y|^{n+sp}}\ dx \ dy. \end{aligned}$$

As for II,

$$\begin{aligned} II \precsim \Vert \nabla \eta \Vert _{\infty }\ \int \limits _{4B}\int \limits _{4B} \frac{|u(x)-u(y)|^{p-2} |\psi (x)-\psi (y)|\ |u(x)-(u)_B| }{|x-y|^{n+sp-1}}\ \ dx\ dy. \end{aligned}$$

For any \(t_2 > 0\) so that \( t_2 = 1-s\), we have with Hölder’s inequality

Since \(t_2 > 0\),

$$\begin{aligned} \int \limits _{4B}\int \limits _{4B} \frac{ |u(x)-(u)_B|^p }{|x-y|^{n- t_2p}}\ \ dx\ dy \precsim (\mathrm{diam\,}B) ^{t_2p}\ \int \limits _{4B} |u(x)-(u)_B|^p\ dx. \end{aligned}$$

So using again (8.1), we arrive at

$$\begin{aligned} II \precsim \mathrm{diam\,}(B)^{-s}\ [u]_{W^{s,p}(4B)}^{p-1}\ \left( \int \limits _{4B} |u(x)-(u)_B|^p\ dx \right) ^{\frac{1}{p}}. \end{aligned}$$

III can be estimated the same way as II, and we have the following estimate for \([u]_{W^{s,p}(B)}^{p}\)

$$\begin{aligned}&[u]_{W^{s,p}(4B)}\ \sup _{\varphi } \int \limits _{4B}\int \limits _{4B} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))\ (\varphi (x)-\varphi (y))}{|x-y|^{n+sp}}\ dx \ dy\\&\quad +[u]_{W^{s,p}(4B)}^{p-1}\ \mathrm{diam\,}(B)^{-s}\ \left( \int \limits _{4B} |u(x)-(u)_B|^p\ dx \right) ^{\frac{1}{p}}. \end{aligned}$$

We conclude with Young’s inequality. \(\square \)

The next Proposition follows immediately from Jensen’s inequality and the definition of \([u]_{W^{t,p}(\lambda B)}^p\).

Proposition 8.3

(A Poincaré type inequality) Let B be a ball and for \(\lambda \ge 1\) let \(\lambda B\) be the concentric ball with \(\lambda \) times the radius. Then for any \(t \in (0,1)\), \(p \in (1,\infty )\),

$$\begin{aligned} \int \limits _{\lambda B} |u(x)-(u)_B|^p\ dx \precsim \lambda ^{n+tp} \mathrm{diam\,}(B)^{t p} \ [u]_{W^{t,p}(\lambda B)}^p. \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schikorra, A. Nonlinear commutators for the fractional p-Laplacian and applications. Math. Ann. 366, 695–720 (2016). https://doi.org/10.1007/s00208-015-1347-0

Download citation

Mathematics Subject Classification

  • 35D30
  • 35B45
  • 35J60
  • 47G20
  • 35S05
  • 58E20