Schwarz lemma at the boundary of strongly pseudoconvex domain in \({\mathbb {C}}^n\)

Abstract

In this paper, we establish a new type of the classical boundary Schwarz lemma for holomorphic self-mappings of strongly pseudoconvex domain in \({\mathbb {C}}^n\).

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ahlfors, L.V.: An extension of Schwarz’s lemma. Trans. Am. Math. Soc. 43(3), 359–364 (1938)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Burns, D.M., Krantz, S.G.: Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary. J. Am. Math. Soc. 7(3), 661–676 (1994)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Chelst, D.: A generalized Schwarz lemma at the boundary. Proc. Am. Math. Soc. 129(11), 3275–3278 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Franzoni, T., Vesentini, E.: Holomorphic Mapps and Invariant Distances. North-Holland, Amsterdam (1980)

    Google Scholar 

  5. 5.

    Garnett, J.B.: Bounded Analytic Functions. Academic Press, New York (1981)

    Google Scholar 

  6. 6.

    Graham, I.: Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in \({\mathbb{C}}^n\) with smooth boundary. Trans. Am. Math. Soc. 207, 219–240 (1975)

    MATH  Google Scholar 

  7. 7.

    Huang, X.J.: A preservation principle of extremal mappings near a strongly pseudoconvex point and its applications. Ill. J. Math. 38(2), 283–302 (1994)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Huang, X.J.: Some applications of Bell’s theorem to weakly pseudoconvex domains. Pac. J. Math. 158(2), 305–315 (1993)

    Article  MATH  Google Scholar 

  9. 9.

    Huang, X.J.: A boundary rigidity problem for holomorphic mappings on some weakly pseudoconvex domains. Can. J. Math. 47(2), 405–420 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Kerzman, N.: Taut manifolds and domains of holomorphy in \({\mathbb{C}}^n\). Not. Am. Math. Soc. 16, 675–676 (1969)

    Google Scholar 

  11. 11.

    Kim, K., Lee, H.: Schwarz’s Lemma from a Differential Geometric Viewpoint. IISc Press, Bangalore (2011)

    Google Scholar 

  12. 12.

    Krantz, S.G.: Function Theory of Several Complex Variables, 2nd edn. American Mathematical Society, Providence (2001)

    Google Scholar 

  13. 13.

    Krantz, S.G.: The Schwarz lemma at the boundary. Complex Var. Elliptic Equ. 56(5), 455–468 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Lelong, P.: Pluricomplex Green functions and Schwarz lemmas in Banach spaces. J. Math. Pures Appl. 68(3), 319–347 (1989)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Liu, T.S., Wang, J.F., Tang, X.M.: Schwarz lemma at the boundary of the unit ball in \({\mathbb{C}}^n\) and its applications. J. Geom. Anal. (2014). doi:10.1007/s12220-014-9497-y

    MathSciNet  Google Scholar 

  16. 16.

    Osserman, R.: A sharp Schwarz inequality on the boundary. Proc. Am. Math. Soc. 128(12), 3513–3517 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Rodin, B.: Schwarz’s lemma for circle packings. Invent. Math. 89(2), 271–289 (1987)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Siu, Y., Yeung, S.: Defects for ample divisors of abelian varieties, Schwarz lemma, and hyperbolic hypersurfaces of low degrees. Am. J. Math. 119(5), 1139–1172 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Tsuji, H.: A general Schwarz lemma. Math. Ann. 256(3), 387–390 (1981)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Wu, H.: Normal families of holomorphic mappings. Acta Math. 119(1), 193–233 (1967)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Yau, S.T.: A general Schwarz lemma for Kähler manifolds. Am. J. Math. 100(1), 197–203 (1978)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

T. Liu is partially supported by NNSF of China (Grant No. 11471111) and X. Tang is partially supported by NNSF of China (Grant Nos. 11471111 and 11271124) and NSF of Zhejiang Province (Grant No. LY14A010017).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaomin Tang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Tang, X. Schwarz lemma at the boundary of strongly pseudoconvex domain in \({\mathbb {C}}^n\) . Math. Ann. 366, 655–666 (2016). https://doi.org/10.1007/s00208-015-1341-6

Download citation

Mathematics Subject Classification

  • 32H02
  • 30C80
  • 32H99