Skip to main content
Log in

Reconstructing function fields from rational quotients of mod-\(\ell \) Galois groups

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we develop the main step in the global theory for the mod-\(\ell \) analogue of Bogomolov’s program in birational anabelian geometry for higher-dimensional function fields over algebraically closed fields. More precisely, we show how to reconstruct a function field K of transcendence degree \(\ge \)5 over an algebraically closed field, up-to inseparable extensions, from the mod-\(\ell \) abelian-by-central Galois group of K endowed with the collection of mod-\(\ell \) rational quotients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Artin, E.: Geometric Algebra. Interscience Publishers, New York (1957)

    MATH  Google Scholar 

  2. Bogomolov, F.A.: On two conjectures in birational algebraic geometry. In: Algebraic Geometry and Analytic Geometry (Tokyo, 1990), pp. 26–52 (1991)

  3. Bogomolov, F.A., Tschinkel, Y.: Commuting elements of Galois groups of function fields. In: Motives, Polylogarithms and Hodge Theory, Part I (Irvine, CA, 1998), pp. 75–120 (2002)

  4. Bogomolov, F.A., Tschinkel, Y.: Reconstruction of function fields. Geom. Funct. Anal. 18(2), 400–462 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bogomolov, F.A., Tschinkel, Y.: Milnor K2 and field homomorphisms. In: Surveys in Differential Geometry. Geometry, Analysis, and Algebraic Geometry: Forty Years of the Journal of Differential Geometry, vol. XIII, pp. 223–244 (2009)

  6. Bogomolov, F.A., Tschinkel, Y.: Reconstruction of higher-dimensional function fields. Mosc. Math. J. 11(2), 185–204, 406 (2011)

  7. Bogomolov, F.A., Tschinkel, Y.: Introduction to birational anabelian geometry. In: Current Developments in Algebraic geometry. Selected Papers Based on the Presentations at the Workshop “Classical Algebraic Geometry Today”, MSRI, Berkeley, CA, USA, 26–30 Jan 2009, pp. 17–63 (2012). (English)

  8. Chebolu, K.S., Efrat, I., Mináč, J.: Quotients of absolute Galois groups which determine the entire Galois cohomology. Math. Ann. 352(1), 205–221 (2012). arXiv:0905.1364

  9. Evans, D.M., Hrushovski, E.: Projective planes in algebraically closed fields. Proc. Lond. Math. Soc. (3) 62(1), 1–24 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Evans, D.M., Hrushovski, E.: The automorphism group of the combinatorial geometry of an algebraically closed field. J. Lond. Math. Soc. (2) 52(2), 209–225 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Efrat, I., Mináč, J.: On the descending central sequence of aboslute Galois groups. Am. J. Math. 133(6), 1503–1532 (2011). arXiv:0809.2166

  12. Efrat, I., Mináč, J.: Galois groups and cohomological functors. Trans. Am. Math. Soc. (2015, to appear). arXiv:1103.1508

  13. Engler, A.J., Prestel, A.: Valued Fields, Springer Monographs in Mathematics. Springer, Berlin (2005)

    MATH  Google Scholar 

  14. Fried, M.D., Jarden, M.: Field Arithmetic, vol. 11, 3rd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  15. Gismatullin, J.: Combinatorial geometries of field extensions. Bull. Lond. Math. Soc. 40(5), 789–800 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gille, P., Szamuely, T.: Central Simple Algebras and Galois Cohomology, Cambridge Studies in Advanced Mathematics, vol. 101. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  17. Labute, J.: Classification of Demushkin groups. Can. J. Math. 19, 106–132 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lang, S.: Introduction to Algebraic Geometry, vol. 109. Addison-Wesley, Reading (1972)

    MATH  Google Scholar 

  19. Merkurjev, A.S., Suslin, A.A.: K-cohomology of Severi–Brauer varieties and the norm residue homomorphism. Izv. Akad. Nauk SSSR Ser. Mat. 46(5), 1011–1046, 1135–1136 (1982)

  20. Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften, vol. 323, 2nd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  21. Pop, F.: Pro-l abelian-by-central Galois theory of prime divisors. Isr. J. Math. 180, 43–68 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pop, F.: \(\mathbb{Z}/l\) abelian-by-central Galois theory of prime divisors. In: The Arithmetic of Fundamental Groups: Pia 2010, pp. 225–244 (2011)

  23. Pop, F.: On the birational anabelian program initiated by Bogomolov I. Invent. Math. 187(3), 511–533 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pop, F.: Recovering function fields from their decomposition graphs. In: Number Theory, Analysis and Geometry, pp. 519–594 (2012)

  25. Rost, M.: Chain lemma for splitting fields of symbols (1998). http://www.math.uni-bielefeld.de/~rost/chain-lemma.html. (preprint)

  26. Serre, J.-P.: Galois Cohomology. Translated from the French by Patrick Ion, 2nd edn. Springer, Berlin (2002). (English)

  27. Topaz, A.: Commuting-liftable subgroups of Galois groups II. J. Reine Angew. Math. (2014). doi:10.1515/crelle-2014-0115

  28. Topaz, A.: Detecting valuations using small Galois groups. In: Campillo, A., Kuhlmann, F-V., Teissier, B. (eds.) Valuation Theory in Interaction, pp. 566–578 (2014)

  29. Topaz, A.: Abelian-by-Central Galois groups of fields I: a formal description. Trans. Am. Math. Soc. (2015, to appear). arXiv:1310.5613

  30. Voevodsky, V.: On motivic cohomology with Z/l-coefficients. Ann. Math. (2) 174(1), 401–438 (2011). (English)

    Article  MathSciNet  MATH  Google Scholar 

  31. Weibel, C.: The norm residue isomorphism theorem. J. Topol. 2(2), 346–372 (2009). (English)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author warmly thank Florian Pop and Thomas Scanlon for numerous technical discussions concerning the topics in this paper. The author also thanks Martin Hils and James Freitag for several helpful discussions. The manuscript was written during the MSRI semester on Model Theory, Arithmetic Geometry and Number theory in the spring of 2014. The author thanks MSRI and the organizers of this semester for their hospitality and for an excellent research environment. The author also thanks the referee for his/her extremely useful comments which helped improve the paper in many ways.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Topaz.

Additional information

This research was supported by NSF postdoctoral fellowship DMS-1304114.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topaz, A. Reconstructing function fields from rational quotients of mod-\(\ell \) Galois groups. Math. Ann. 366, 337–385 (2016). https://doi.org/10.1007/s00208-015-1327-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1327-4

Mathematics Subject Classification

Navigation