Skip to main content
Log in

Convergence of Yang–Mills–Higgs fields

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we study the convergence of Yang–Mills–Higgs (YMH) fields defined on fiber bundles over Riemann surfaces, where the fiber is a compact symplectic manifold and the conformal structure of the underlying surface is allowed to vary. We show that away from the nodes, the YMH fields converges, up to gauge, to a smooth YMH field modulo finitely many harmonic spheres, while near the nodes where the conformal structure degenerates, the YMH fields converges to a pair consisting of a flat connection and a twisted geodesic (with potential). In particular, we generalize the recent compactness results on both harmonic maps from surfaces and twisted holomorphic curves to general YMH fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradlow, S.B.: Special metrics and stability for holomorphic bundles with global sections. J. Differ. Geom. 33, 169–213 (1991)

    MathSciNet  MATH  Google Scholar 

  2. Cieliebak, K., Gaio, A., Mundet i Riera, I., Salamon, D.: The symplectic vortex equations and invariants of Hamiltonian group actions. J. Symplectic Geom. 1(3), 543–645 (2002)

  3. Cieliebak, K., Gaio, A., Salamon, D.: J-Holomorphic curves, moment maps, and invariants of hamiltonian group actions. Int. Math. Res. Not. 16, 832–882 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Chen, L., Li, Y., Wang, Y.: The refined analysis on the convergence behavior of harmonic map sequence from cylinders. J. Geom. Anal. 22(4), 942–963 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J., Tian, G.: Compactification of moduli space of harmonic mappings. Comm. Math. Helv. 74, 201–237 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, B., Wang, B.: \(L^2\)-Moduli Spaces of Symplectic Vortices on Riemann Surfaces with Cylindrical Ends. Arxiv preprint. arXiv:1405.6387 (2014)

  7. Ding, W., Tian, G.: Energy identity for a class of approximate harmonic maps from surfaces. Commun. Anal. Geom. 3, 543–554 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Donaldson, S.K.: Twisted harmonic maps and the self-duality equations. Proc. Lond. Math. Soc. 55, 127–131 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fukaya, K., Ono, K.: Arnold conjecture and Gromov–Witten invariant. Topology 38, 933–1048 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fardoun, A., Ratto, A.: Harmonic maps with potential. Calc. Var. PDE 5(2), 183–197 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gromov, M.: Pseudo holomorphic curves in symplectic manifolds. Invent. Math. 82(2), 307–347 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jaffe, A., Taubes, C.: Vortices and Monopoles, Structure of Static Gauge Theories. Progress in Physics, 2. Birkháuser, Boston, MA (1980)

  13. Laurain, P., Rivière, T.: Angular energy quantization for linear elliptic systems with antisymmetric potentials and applications. Anal. PDE 7(1), 1–41 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin, F., Wang, C.: Energy identity of harmonic map flows from surfaces at finite singular time. Calc. Var. PDE 6, 369–380 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin, L.: The Heat Flow for Kähler Fibrations. Arxiv preprint. arXiv:1211.5696 (2012)

  16. Moore, J., Schlafly, R.: On equivariant isometric embeddings. Math. Z. 173(2), 119–133 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mundet i Riera, I.: A Hitchin–Kobayashi correspondence for Kähler fibrations. J. Reine Angew. Math. 528, 41–80 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Mundet i Riera, I.: Hamiltonian Gromov–Witten invariants. Topology 42, 525–553 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mundet i Riera, I., Tian, G.: A compactification of the moduli space of twisted holomophic maps. Adv. Math. 222, 1117–1196 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ott, A.: Removal of Singularities and Gromov Compactness for Symplectic Vortices. ArXiv preprint. arXiv:0912.2500 (2009)

  21. Parker, T.: A Morse theory for equivariant Yang–Mills. Duke Math. J. 66(2), 337–356 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Parker, T.: Bubble tree convergence for harmonic maps. J. Differ. Geom. 44(3), 595–633 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Ratiu, T.: The C. Neumann problem as a completely integrable system on an adjoint orbit. Trans. Am. Math. Soc. 264(2), 321–329 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Riviére, T., Struwe, M.: Partial regularity for harmonic maps and related problems. Commun. Math. Phys. 61(4), 451–463 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Song, C.: Critical points of Yang–Mills–Higgs functional. Commun. Contemp. Math. 13(3), 463–486 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sibner, L., Sibner, R.: Classification of singular Sobolev connections by their holonomy. Commun. Math. Phys. 144, 337–350 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sharp, B., Topping, P.: Decay estimates for Rivière’s equation, with applications to regularity and compactness. Trans. Am. Math. Soc. 365(5), 2317–2339 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. Math. 113(2), 1–24 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  29. Taubes, C.: The existence of non-minimal solution to the \(SU(2)\) Yang–Mills–Higgs equations on \({\mathbb{R}}^3\): part I, II. Commun. Math. Phys. 86, 257–320 (1982)

    Article  MATH  Google Scholar 

  30. Taubes, C.: Min–max theory for the Yang–Mills–Higgs equations. Commun. Math. Phys. 97(4), 473–540 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Taubes, C.: Differential Geometry: Bundles, Connections, Metrics and Curvature. Oxford University Press, Oxford (2011)

    Book  MATH  Google Scholar 

  32. Tian, G., Yang, B.: Compactification of the moduli spaces of vortices and coupled vortices. J. Reine Angew. Math. 553, 17–41 (2002)

    MathSciNet  MATH  Google Scholar 

  33. Uhlenbeck, K.: Connections with \(L^p\) bounds on curvature. Commun. Math. Phys. 83, 31–42 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  34. Venugopalan, S.: Vortices on Surfaces with Cylindrical Ends. ArXiv preprint. arXiv:1312.1074 (2013)

  35. Witten, E.: Topological sigma models. Commun. Math. Phys. 118, 411–449 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xu, G.: Gauged Floer Homology for Hamiltonian Isotopies I: Definition of the Floer Homology Groups. ArXiv preprint. arXiv:1312.6923 (2013)

  37. Zhang, X.: Compactness theorems for coupled Yang–Mills fields. J. Math. Anal. Appl. 298(1), 261–278 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhu, M.: Harmonic maps from degenerating Riemann surfaces. Math. Z. 264(1), 63–85 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ziltener, F.: A Quantum Kirwan Map: Bubbling and Fredholm Theory for Symplectic Vortices Over the Plane. ArXiv preprint. arXiv:1209.5866 (2012)

Download references

Acknowledgments

Part of this work was carried out when the author was visiting Beijing International Center for Mathematical Research. The author would like to thank Prof. Gang Tian for his constant support. He would also like to thank Prof. Youde Wang, Yuxiang Li, Miaomiao Zhu and Li Chen for many helpful discussions. Supported by NSFC No. 11201387, SRFDP grant No. 20120121120022 and the Natural Science Foundation of Fujian Province of China (No. 2014J01023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C. Convergence of Yang–Mills–Higgs fields. Math. Ann. 366, 167–217 (2016). https://doi.org/10.1007/s00208-015-1321-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1321-x

Mathematics Subject Classification

Navigation