Skip to main content
Log in

A spinorial energy functional: critical points and gradient flow

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let M be a compact spin manifold. On the universal bundle of unit spinors we study a natural energy functional whose critical points, if \(\dim M \ge 3\), are precisely the pairs \((g,{\varphi })\) consisting of a Ricci-flat Riemannian metric g together with a parallel g-spinor \({\varphi }\). We investigate the basic properties of this functional and study its negative gradient flow, the so-called spinor flow. In particular, we prove short-time existence and uniqueness for this flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammann, B., Moroianu, A., Moroianu, S.: The Cauchy problem for metrics with parallel spinors. Commun. Math. Phys. 320, 173–198 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ammann, B., Weiß, H., Witt, F.: The spinorial energy functional on surfaces. Math. Z (2015). doi:10.1007/s00209-015-1537-1

  3. Ammann, B., Kröncke, K., Weiß, H., Witt, F.: Holonomy rigidity for Ricci flat metrics. In preparation

  4. Aubin, T.: Some Nonlinear Problems in Riemannian Geometry. Springer, Berlin (1997)

    MATH  Google Scholar 

  5. Bär, C.: Real killing spinors and holonomy. Commun. Math. Phys. 154(3), 509–521 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bär, C., Gauduchon, P., Moroianu, A.: Generalized cylinders in semi-Riemannian and spin geometry. Math. Z. 249(3), 545–580 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baum, H., Friedrich, T., Grunewald, R., Kath, I.: Twistors and Killing Spinors on Riemannian Manifolds, 124 Teubner-Texte zur Mathematik. Teubner, Stuttgart (1991)

    MATH  Google Scholar 

  8. Besse, A.: Einstein Manifolds. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  9. Bourguignon, J.-P., Gauduchon, P.: Spineurs, opérateurs de Dirac et variations de métriques. Commun. Math. Phys. 144(3), 581–599 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boyer, C., Galicki, K.: 3-Sasakian Manifolds, Surveys in Differential Geometry: Essays on Einstein Manifolds, pp. 123–184, Int. Press, Boston (1999)

  11. Cheeger, J., Gromoll, D.: The splitting theorem for manifolds of nonnegative Ricci curvature. J. Diff. Geom. 6(1), 119–128 (1971)

    MathSciNet  MATH  Google Scholar 

  12. Conti, D., Salamon, S.: Reduced holonomy, hypersurfaces and extensions. Int. J. Geom. Methods Mod. Phys. 3(5–6), 899–912 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dai, X., Wang, X., Wei, G.: On the stability of Riemannian manifold with parallel spinors. Invent. Math. 161(1), 151–176 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. DeTurck, D.: Deforming metrics in the direction of their Ricci tensors. J. Differ. Geom. 28, 157–162 (1983)

    MathSciNet  MATH  Google Scholar 

  15. Ebin, D.: The manifold of Riemannian metrics. In: Proceedings of Symposium on Pure Mathematics, Vol. XV (Berkeley, Calif., 1968), pp. 11–40 Amer. Math. Soc., Providence, R.I. (1970)

  16. Fernández, M., Gray, A.: Riemannian manifolds with structure group \({{\rm G_2}}\). Ann. Mat. Pura Appl. 132, 19–45 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fischer, A., Wolf, J.: The structure of compact Ricci-flat Riemannian manifolds. J. Differ. Geom. 10, 277–288 (1975)

    MathSciNet  MATH  Google Scholar 

  18. Friedrich, T.: On the spinor representation of surfaces in Euclidean 3-space. J. Geom. Phys. 28, 143–157 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Friedrich, T.: Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics 25. AMS, Providence (2000)

    Google Scholar 

  20. Friedrich, T., Kath, I.: Compact 5-dimensional Riemannian manifolds with parallel spinors. Math. Nachr. 147, 161–165 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Friedrich, T., Kath, I., Moroianu, A., Semmelmann, U.: On nearly parallel \({{\rm G_2}}\)-structures. J. Geom. Phys. 23, 259–286 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Goto, R.: Moduli spaces of topological calibrations, Calabi-Yau, hyper-Kähler, \({{\rm G_2}}\) and \({{\rm Spin}}(7)\) structures. Intern. J. Math. 15(3), 211–257 (2004)

    Article  MATH  Google Scholar 

  23. Gray, A.: Weak holonomy groups. Math. Z. 123, 290–300 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hamilton, R.S., The Formation of Singularities in the Ricci Flow, Surveys in Differential Geometry, Vol. II (Cambridge, MA, 1993), PP. 7–136. Int. Press, Cambridge (1995)

  25. Hermann, A.: Dirac eigenspinors for generic metrics. Ph.D. thesis, University of Regensburg. (arXiv:1201.5771) (2012)

  26. Hitchin, N.: Harmonic spinors. Adv. Math. 14, 1–55 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hitchin, N.: Stable forms and special metrics, global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000), 70-89, Contemp. Math. 288, Amer. Math. Soc. Providence, RI (2001)

  28. Kazdan, J.: Another proof of Bianchi’s identity in Riemannian geometry. Proc. Am. Math. Soc. 81(2), 341–342 (1981)

    MathSciNet  MATH  Google Scholar 

  29. Kosmann, Y.: Dérivées de Lie des spineurs. Ann. Math. Pura Appl. 91(4), 317–395 (1972)

    MathSciNet  MATH  Google Scholar 

  30. Ladyzhenskaya, O., Solonnikov, V., Uraltseva, N.: Linear and Quasilinear Parabolic Equations. Nauka, Moscow (1967)

    Google Scholar 

  31. Lawson, H., Michelsohn, M.-L.: Spin Geometry. Princeton University Press, New Jersey (1989)

    MATH  Google Scholar 

  32. Joyce, D.: Compact Manifolds with Special Holonomy. OUP, Oxford (2000)

    MATH  Google Scholar 

  33. McInnes, B.: Methods of holonomy theory for Ricci-flat Riemannian manifolds. J. Math. Phys. 32(4), 888–896 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Moroianu, A., Semmelmann, U.: Parallel spinors and holonomy groups. J. Math. Phys. 41(4), 2395–2402 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nordström, J.: Ricci-flat deformations of metrics with exceptional holonomy. Bull. Lond. Math. Soc. 45, 1004–1018 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pfäffle, F.: The Dirac spectrum of Bieberbach manifolds. J. Geom. Phys. 35(4), 367–385 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Taylor, M.: Pseudodifferential Operators and Nonlinear PDE. Birkhäuser, Basel (1991)

    Book  MATH  Google Scholar 

  38. Topping, P.: Lectures on the Ricci flow, LMS Lecture Note Series 325. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  39. Wang, M.: Parallel spinors and parallel forms. Ann. Global Anal. Geom. 7(1), 59–68 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, M.: Preserving parallel spinors under metric deformations. Indiana Univ. Math. J. 40(3), 815–844 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, M.: On non-simply connected manifolds with non-trivial parallel spinors. Ann. Global Anal. Geom. 13(1), 31–42 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. Weiß, H., Witt, F.: A heat flow for special metrics. Adv. Math. 231(6), 3288–3322 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Weiß, H., Witt, F.: Energy functionals and soliton equations for \({{\rm G_2}}\)-forms. Ann. Global Anal. Geom. 42(4), 585–610 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the referees for carefully reading the manuscript which led to considerable improvements of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Ammann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammann, B., Weiss, H. & Witt, F. A spinorial energy functional: critical points and gradient flow. Math. Ann. 365, 1559–1602 (2016). https://doi.org/10.1007/s00208-015-1315-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1315-8

Navigation