Skip to main content
Log in

The vanishing viscosity limit in the presence of a porous medium

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider the flow of a viscous, incompressible, Newtonian fluid in a perforated domain in the plane. The domain is the exterior of a regular lattice of rigid particles. We study the simultaneous limit of vanishing particle size and distance, and of vanishing viscosity. Under suitable conditions on the particle size, particle distance, and viscosity, we prove that solutions of the Navier–Stokes system in the perforated domain converges to solutions of the Euler system, modeling inviscid, incompressible flow, in the full plane. That is, the flow is not disturbed by the porous medium and becomes inviscid in the limit. Convergence is obtained in the energy norm with explicit rates of convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Allaire, G.: Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes. Arch. Rational Mech. Anal. 113(3), 209–259 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allaire, G.: Homogenization of the Navier–Stokes equations in open sets perforated with tiny holes. II. Noncritical sizes of the holes for a volume distribution and a surface distribution of holes. Arch. Rational Mech. Anal. 113(3), 261–298 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bessaih, H., Maris, F.: Homogenization of the stochastic Navier-Stokes equation with a stochastic slip boundary condition. ArXiv e-prints (2014)

  4. Bogovskiĭ, M.E.: Solution of the first boundary value problem for an equation of continuity of an incompressible medium. Dokl. Akad. Nauk SSSR 248(5), 1037–1040 (1979)

    MathSciNet  Google Scholar 

  5. Bogovskiĭ, M.E.: Solutions of some problems of vector analysis, associated with the operators div and grad. In: Theory of Cubature Formulas and the Application of Functional Analysis to Problems of Mathematical Physics, Trudy Sem. S. L. Soboleva, vol. 1980, no. 1, pp. 5–40, 149. Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk (1980)

  6. Bonnaillie-Noël, V., Lacave, C., Masmoudi, N.: Permeability through a perforated domain for the incompressible 2D Euler equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(1), 159–182 (2015)

  7. Chipot, M., Planas, G., Robinson, J.C., Xue, W.: Limits of the Stokes and Navier-Stokes equations in a punctured periodic domain. ArXiv e-prints (2014)

  8. Cioranescu, D., Murat, F.: Un terme étrange venu d’ailleurs. In: Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, vol. II (Paris, 1979/1980), Res. Notes in Math., vol. 60, pp. 98–138, 389–390. Pitman, Boston (1982)

  9. Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations, 2nd edn. Springer Monographs in Mathematics, Steady-state problems. Springer, New York (2011)

  10. Gérard-Varet, D., Dormy, E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23(2), 591–609 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gérard-Varet, D., Nguyen, T.: Remarks on the ill-posedness of the Prandtl equation. Asymptot. Anal. 77(1–2), 71–88 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Han, D., Wang, X.: Initial-boundary layer associated with the nonlinear Darcy–Brinkman system. J. Differ. Equ. 256(2), 609–639 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Iftimie, D., Kelliher, J.P.: Remarks on the vanishing obstacle limit for a 3D viscous incompressible fluid. Proc. Am. Math. Soc. 137(2), 685–694 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Iftimie, D.: Lopes Filho, M.C., Nussenzveig Lopes, H.J.: Two dimensional incompressible ideal flow around a small obstacle. Commun. Partial Differ. Equ. 28(1–2), 349–379 (2003)

    Article  MathSciNet  Google Scholar 

  15. Iftimie, D.: Lopes Filho, M.C., Nussenzveig Lopes, H.J.: Two-dimensional incompressible viscous flow around a small obstacle. Math. Ann. 336(2), 449–489 (2006)

    Article  MathSciNet  Google Scholar 

  16. Iftimie, D.: Lopes Filho, M.C., Nussenzveig Lopes, H.J.: Incompressible flow around a small obstacle and the vanishing viscosity limit. Commun. Math. Phys. 287(1), 99–115 (2009)

    Article  MathSciNet  Google Scholar 

  17. Kato, T.: Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary. In: Seminar on Nonlinear Partial Differential Equations (Berkeley, Calif., 1983), Math. Sci. Res. Inst. Publ., vol. 2, pp. 85–98. Springer, New York (1984)

  18. Kelliher, J.P., Temam, R., Wang, X.: Boundary layer associated with the Darcy–Brinkman–Boussinesq model for convection in porous media. Phys. D 240(7), 619–628 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kikuchi, K.: Exterior problem for the two-dimensional Euler equation. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30(1), 63–92 (1983)

  20. Kiselev, A., Sverak, V.: Small scale creation for solutions of the incompressible two dimensional Euler equation. Ann. Math. 180(3), 1205–1220 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kozono, H., Yamazaki, M.: Local and global unique solvability of the Navier–Stokes exterior problem with Cauchy data in the space \(L^{n,\infty }\). Houston J. Math. 21(4), 755–799 (1995)

    MathSciNet  MATH  Google Scholar 

  22. Lacave, C.: 3D viscous incompressible fluid around one thin obstacle. Proc. Am. Math. Soc. 143(5), 2175–2191 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lacave, C., Lopes Filho, M.C., Nussenzveig Lopes, H.J.: Asymptotic behavior of 2d incompressible ideal flow around small disks. arXiv preprint (2015)

  24. Lacave, C., Masmoudi, N.: Impermeability through a perforated domain for the incompressible 2d euler equations. arXiv preprint (2014). arXiv:1407.2792

  25. Lions, P.-L., Masmoudi, N.: Homogenization of the Euler system in a 2D porous medium. J. Math. Pures Appl. (9) 84(1), 1–20 (2005)

  26. Lopes Filho, M.C.: Vortex dynamics in a two-dimensional domain with holes and the small obstacle limit. SIAM J. Math. Anal. 39(2), 422–436 (2007, electronic)

  27. Maekawa, Y.: On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane. Commun. Pure Appl. Math. 67(7), 1045–1128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics, vol. 27. Cambridge University Press, Cambridge (2002)

  29. McGrath, F.J.: Nonstationary plane flow of viscous and ideal fluids. Arch. Rational Mech. Anal. 27, 329–348 (1967)

    MathSciNet  MATH  Google Scholar 

  30. Mikelić, A.: Effets inertiels pour un écoulement stationnaire visqueux incompressible dans un milieu poreux. C. R. Acad. Sci. Paris Sér. I Math. 320(10), 1289–1294 (1995)

  31. Mikelić, A., Paoli, L.: Homogenization of the inviscid incompressible fluid flow through a \(2\)D porous medium. Proc. Am. Math. Soc. 127(7), 2019–2028 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schlichting, H., Gersten, K.: Boundary-Layer Theory, enlarged edition. Springer, Berlin (2000) (with contributions by Egon Krause and Herbert Oertel. Jr, Translated from the ninth German edition by Katherine Mayes)

  33. Tartar, L.: Cours Peccot au Collège de France (1977, unpublished)

  34. Temam, R., Wang, X.: On the behavior of the solutions of the Navier-Stokes equations at vanishing viscosity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25(3–4), 807–828 (1997) (dedicated to Ennio De Giorgi)

  35. Vishik, M.: Hydrodynamics in Besov spaces. Arch. Rational Mech. Anal. 145(3), 197–214 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, X.: A Kato type theorem on zero viscosity limit of Navier-Stokes flows. Indiana Univ. Math. J. 50(Special Issue), 223–241 (2001) [dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000)]

  37. Yudovich, V.I.: The flow of a perfect, incompressible liquid through a given region. Sov. Phys. Dokl. 7, 789–791 (1962)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

A. M. would like to acknowledge the hospitality and financial support of Université Paris-Diderot (Paris 7), Université Pierre et Marie Curie (Paris 6), and the financial support of Paris City Hall and the Fondation Sciences Mathématiques de Paris, to conduct part of this work. The authors are also grateful to the anonymous referee for his valuable comments on the first version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Lacave.

Additional information

C. Lacave is partially supported by the Agence Nationale de la Recherche, Project DYFICOLTI Grant ANR-13-BS01-0003-01, and by the project Instabilities in Hydrodynamics funded by Paris City Hall (program Emergences) and the Fondation Sciences Mathématiques de Paris. A. Mazzucato was partially supported by the US National Science Foundation Grants DMS-1009713, DMS-1009714, and DMS-1312727.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lacave, C., Mazzucato, A.L. The vanishing viscosity limit in the presence of a porous medium. Math. Ann. 365, 1527–1557 (2016). https://doi.org/10.1007/s00208-015-1313-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1313-x

Mathematics Subject Classification

Navigation