Abstract
Hausel and Rodriguez-Villegas conjectured that the intersection form on the moduli space of stable \(\textsf {PGL}_n\)-Higgs bundles on a curve vanishes if the degree is coprime to n. In this note we prove this conjecture. Along the way we show that moduli spaces of stable chains are irreducible for stability parameters larger than the stability condition induced form stability of Higgs bundles.
This is a preview of subscription content, access via your institution.
Notes
Unfortunately this Lemma is only formulated for stable chains, because it allows the case \(\alpha =\alpha _{{{\mathrm{Higgs}}}}\). However for \(\alpha >\alpha _{{{\mathrm{Higgs}}}}\) the first inequality in the proof is always strict, so that the vanishing of \(H^2\) also holds for strictly semistable chains if \(\alpha >\alpha _{{{\mathrm{Higgs}}}}\).
References
Álvarez-Cónsul, L., García-Prada, O., Schmitt, A.: On the geometry of moduli spaces of holomorphic chains over compact Riemann surfaces. In: International Mathematics Research Papers, pp. 1-82 (2006)
Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves, vol. I. Grundlehren der Mathematischen Wissenschaften 267, Springer, Berlin (1985)
Atiyah, M.F., Bott, R.: The Yang–Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. A 308, 523–615 (1983)
Beauville, A., Narasimhan, M.S., Ramanan, S.: Spectral curves and the generalised theta divisor. J. Reine Angew. Math. 398, 169–179 (1989)
Białynicki-Birula, A.: Theorems on actions of algebraic groups. Ann. Math. (2) 98(3), 480–497 (1973)
Bradlow, S.B., García-Prada, O., Gothen, P.: Moduli spaces of holomorphic triples over compact Riemann surfaces. Math. Ann. 328(1–2), 299–351 (2004)
Chaudouard, P.-H., Laumon, G.: Le lemme fondamental pondéré. I. Constructions géométriques. Compos. Math. 146(6), 1416–1506 (2010)
Chaudouard, P.-H., Laumon, G.: Un théorème du support pour la fibration de Hitchin. arXiv:1407.3562
Deligne, P.: Cohomologie étale. Séminaire de Géométrie Algébrique du Bois-Marie SGA 4\(\frac{1}{2}\). In: Avec la collaboration de Boutot, J.F., Grothendieck, A., Illusie, L., Verdier, J.L. (eds.) Lecture Notes in Mathematics, vol. 569, pp. iv+312. Springer, Berlin, New York (1977)
de Cataldo, M.A., Hausel, T., Migliorini, L.: Topology of Hitchin systems and Hodge theory of character varieties: the case A1. Ann. Math. (2) 175(3), 1329–1407 (2012)
Faltings, G.: Stable \(G\)-bundles and projective connections. J. Algebraic Geom. 2, 507–568 (1993)
García-Prada, O., Heinloth, J., Schmitt, A.: On the motives of moduli of chains and Higgs bundles. J. EMS 16(12), 2617–2668 (2014).arXiv:1104.5558
García-Prada, O., Heinloth, J.: The \(y\) genus of the moduli space of \({{\sf PGL}}_n\)-Higgs bundles on a curve (for degree coprime to \(n\)). Duke Math. J. 162(14), 2731–2749 (2013)
Hausel, T.: Vanishing of intersection numbers on the moduli space of Higgs bundles. Adv. Theor. Math. Phys. 2(5), 1011–1040 (1998)
Hausel, T.: Mirror symmetry and Langlands duality in the non-abelian Hodge theory of a curve. In: Geometric Methods in Algebra and Number Theory, Progress in Mathematics, vol. 235, pp. 193-217. Birkhäuser, Boston (2005)
Hausel, T.: S-duality in hyperkhler Hodge theory. In: Garciá-Prada, O., Bourguignon, J.P., Salamon, S. (eds.) The many facets of geometry. A tribute to Nigel Hitchin, pp. 324–345. Oxford University Press, Oxford (2010)
Hausel, T., Rodríguez-Villegas, F.: Mixed Hodge polynomials of character varieties. (With an appendix by Nicholas M. Katz.). Invent. Math. 174(3), 555–624 (2008)
Hausel, T., Thaddeus, M.: Mirror symmetry, Langlands duality, and the Hitchin system. Invent. Math. 153(1), 197–229 (2003)
Heinloth, J.: A conjecture of Hausel on the moduli space of Higgs bundles on a curve. Astérisque 370, 157–175 (2015)
Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. (3) 55(1), 59–126 (1987)
Laumon, G.: Un analogue global du cône nilpotent. Duke Math. J. 57(2), 647–671 (1988)
Nitsure, N.: Moduli space of semistable pairs on a curve. Proc. Lond. Math. Soc. (3) 62(2), 275–300 (1991)
Ngô, B.C.: Le lemme fondamental pour les algèbres de Lie. Publ. Math. Inst. Hautes Études Sci. 111, 1–169 (2010)
Schaub, D.: Courbes spectrales et compactifications de jacobiennes. Math. Z. 227(2), 295–312 (1998)
Acknowledgments
I am greatly indebted to T. Hausel. Discussions with him are the reason why this article exists and it was his idea to use the Poincaré-Hopf theorem to finish the proof of Theorem 1. A large part of this work was done while visiting his group at EPFL. I also thank the referee for many very helpful comments and suggestions. A part of the work was funded through the SFB/TR 45 of the DFG.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Heinloth, J. The intersection form on moduli spaces of twisted \(PGL_n\)-Higgs bundles vanishes. Math. Ann. 365, 1499–1526 (2016). https://doi.org/10.1007/s00208-015-1301-1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00208-015-1301-1