Skip to main content
Log in

Proper harmonic maps between asymptotically hyperbolic manifolds

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Generalizing the result of Li and Tam for the hyperbolic spaces, we prove an existence theorem on the Dirichlet problem for harmonic maps with \(C^1\) boundary conditions at infinity between asymptotically hyperbolic manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akutagawa, K.: Harmonic diffeomorphisms of the hyperbolic plane. Trans. Am. Math. Soc. 342(1), 325–342 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Biquard, O.: Métriques d’Einstein asymptotiquement symétriques. Astérisque (265), vi+109 (2000)

  3. Cheng, S.Y.: Liouville theorem for harmonic maps. In: Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., vol. XXXVI, pp. 147–151. Amer. Math. Soc., Providence (1980)

  4. Chruściel, P.T., Delay, E., Lee, J.M., Skinner, D.N.: Boundary regularity of conformally compact Einstein metrics. J. Differ. Geom. 69(1), 111–136 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Ding, W.Y., Wang, Y.D.: Harmonic maps of complete noncompact Riemannian manifolds. Int. J. Math. 2(6), 617–633 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Donnelly, H.: Asymptotic Dirichlet problem for harmonic maps with bounded image. In: Proceedings of the Euroconference on Partial Differential Equations and their Applications to Geometry and Physics (Castelvecchio Pascoli, 2000), vol. 91, pp. 1–6 (2002)

  7. Economakis, M.: Boundary regularity of the harmonic map problem between asymptotically hyperbolic manifolds. Thesis (Ph.D.), University of Washington. ProQuest LLC, Ann Arbor (1993)

  8. Economakis, M.: A counterexample to uniqueness and regularity for harmonic maps between hyperbolic spaces. J. Geom. Anal. 3(1), 27–36 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eells Jr, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fefferman, C., Graham, C.R.: \(Q\)-curvature and Poincaré metrics. Math. Res. Lett. 9(2–3), 139–151 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fotiadis, A.: Harmonic maps between noncompact manifolds. J. Nonlinear Math. Phys. 15(suppl. 3), 176–184 (2008)

    Article  MathSciNet  Google Scholar 

  12. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, vol. 224, 2nd edn. Springer, Berlin (1983)

  13. Graham, C.R., Zworski, M.: Scattering matrix in conformal geometry. Invent. Math. 152(1), 89–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hamilton, R.S.: Harmonic maps of manifolds with boundary. Lecture Notes in Mathematics, vol. 471. Springer, Berlin (1975)

  15. Jäger, W., Kaul, H.: Uniqueness of harmonic mappings and of solutions of elliptic equations on Riemannian manifolds. Math. Ann. 240(3), 231–250 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jost, J.: Harmonic mappings between Riemannian manifolds. In: Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 4. Australian National University, Centre for Mathematical Analysis, Canberra (1984)

  17. Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30(5), 509–541 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee, J.M.: Fredholm operators and Einstein metrics on conformally compact manifolds. Mem. Am. Math. Soc. 183(864), vi+83 (2006)

  19. Leung, M.C.: Harmonic maps between asymptotically hyperbolic spaces. Thesis (Ph.D.), University of Michigan. ProQuest LLC, Ann Arbor (1991)

  20. Li, P., Tam, L.F.: The heat equation and harmonic maps of complete manifolds. Invent. Math. 105(1), 1–46 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, P., Tam, L.F.: Uniqueness and regularity of proper harmonic maps. Ann. Math. (2) 137(1), 167–201 (1993)

  22. Li, P., Tam, L.F.: Uniqueness and regularity of proper harmonic maps. II. Indiana Univ. Math. J. 42(2), 591–635 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mazzeo, R.: The Hodge cohomology of a conformally compact metric. J. Differ. Geom. 28(2), 309–339 (1988)

    MathSciNet  MATH  Google Scholar 

  24. Mazzeo, R.R., Melrose, R.B.: Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75(2), 260–310 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schoen, R., Yau, S.T.: Compact group actions and the topology of manifolds with nonpositive curvature. Topology 18(4), 361–380 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Robin Graham and Man Chun Leung for their help during preparation of this article. They would also like to thank the anonymous referee for valuable comments. The second author would like to acknowledge the hospitality of the École normale supérieure, where he was visiting while the revision of the manuscript was carried out. The first author is supported in part by the Grant-in-Aid for Challenging Exploratory Research, Japan Society for the Promotion of Science, No. 24654009. The second author is supported in part by the Grant-in-Aid for JSPS Fellows, Japan Society for the Promotion of Science, No. 26-11754.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiko Matsumoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akutagawa, K., Matsumoto, Y. Proper harmonic maps between asymptotically hyperbolic manifolds. Math. Ann. 364, 793–811 (2016). https://doi.org/10.1007/s00208-015-1229-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1229-5

Mathematics Subject Classification

Navigation