Skip to main content
Log in

Glanon groupoids

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We introduce the notions of Glanon groupoids, which are Lie groupoids equipped with multiplicative generalized complex structures, and of Glanon algebroids, their infinitesimal counterparts. Both symplectic and holomorphic Lie groupoids are particular instances of Glanon groupoids. We prove that there is a bijection between Glanon algebroids on one hand and source connected and source-simply connected Glanon groupoids on the other. As a consequence, we recover various known integrability results and obtain the integration of holomorphic Lie bialgebroids to holomorphic Poisson groupoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Yoshimura and Marsden refer to the Whitney sum \(TM\oplus T^*M\) as the “Pontryagin bundle” of \(M\) because of the fundamental role it plays in the geometric interpretation of Pontryagin’s maximum principle. Izu Vaisman calls it the “big tangent bundle” of \(M\). For more details, see [22].

  2. The Whitney sum \(T\varGamma \oplus T^*\varGamma \), which is simultaneously a vector bundle with \(\varGamma \) as base manifold and a Lie groupoid with \(TM\oplus A^*\) as unit space, is a VB-groupoid with the vector bundle \(A\oplus T^*M\) over \(M\) as core [26, 32]. It is well known that a morphism of VB-groupoids determines a morphism of their cores.

References

  1. Alekseev, A., Xu, P.: Courant algebroids and derived brackets (2001, unpublished manuscript)

  2. Barton, J., Stiénon, M.: Generalized complex submanifolds. Pac. J. Math. 236(1), 23–44 (2008, English)

  3. Boumaiza, M., Zaalani, N.: Relèvement d’une algébroïde de Courant. C. R. Math. Acad. Sci. Paris 347(3–4), 177–182 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyom, M.N.: KV-cohomology of Koszul–Vinberg algebroids and Poisson manifolds. Int. J. Math. 16(9), 1033–1061 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bursztyn, H., Cabrera, A., del Hoyo, M.: Vector bundles over Lie groupoids and algebroids. arXiv:1410.5135

  6. Cattaneo, A.S., Felder, G.: Poisson sigma models and symplectic groupoids. In: Quantization of Singular Symplectic Quotients. Progress in Mathematics, vol. 198, pp. 61–93. Birkhäuser, Basel (2001)

  7. Coste, A., Dazord, P., Weinstein, A.: Groupoïdes symplectiques. Publications du Département de Mathématiques. Nouvelle Série. A, vol. 2. Publ. Dép. Math. Nouvelle Sér. A, vol. 87, pp. i–ii, 1–62. Univ. Claude-Bernard, Lyon (1987)

  8. Courant, T.J.: Dirac manifolds. Trans. Am. Math. Soc. 319(2), 631–661 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crainic, M.: Generalized complex structures and Lie brackets. Bull. Braz. Math. Soc. (N.S.) 42(4), 559–578 (2011)

  10. Crainic, M., Fernandes, R.L.: Integrability of Poisson brackets. J. Differ. Geom. 66(1), 71–137 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Drinfel’d, V.G.: Quantum groups. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Berkeley, Calif., 1986) (Providence, RI), pp. 798–820. American Mathematical Society, Providence (1987)

  12. Evens, S., Lu, J.-H., Weinstein, A.: Transverse measures, the modular class and a cohomology pairing for Lie algebroids. Q. J. Math. Oxf. Ser. (2) 50(200), 417–436 (1999)

  13. Gracia-Saz, A., Mehta, R.A.: Lie algebroid structures on double vector bundles and representation theory of Lie algebroids. Adv. Math. 223(4), 1236–1275 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gualtieri, M.: Generalized complex geometry. Ph.D. thesis (2003)

  15. Hitchin, N.: Generalized Calabi–Yau manifolds. Q. J. Math. 54(3), 281–308 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huebschmann, J.: Duality for Lie–Rinehart algebras and the modular class. J. Reine Angew. Math. 510, 103–159 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Jotz, M.: Homogeneous spaces of Dirac groupoids (2013). New version of the preprint arXiv:1009.0713. Available at http://www.jotz-lean.staff.shef.ac.uk/

  18. Lean, M.J.: Dirac groupoids and Dirac bialgebroids (2014, preprint)

  19. Karasëv, M.V.: The Maslov quantization conditions in higher cohomology and analogs of notions developed in Lie theory for canonical fibre bundles of symplectic manifolds. I, II. Selecta Math. Soviet. 8(3), 213–234, 235–258 (1989). Translated from the Russian by Pavel Buzytsky, selected translations

  20. Kosmann-Schwarzbach, Y.: Exact Gerstenhaber algebras and Lie bialgebroids. Acta Appl. Math. 41(1–3), 153–165 (1995). Geometric and algebraic structures in differential equations

  21. Kosmann-Schwarzbach, Y.: The Lie bialgebroid of a Poisson–Nijenhuis manifold. Lett. Math. Phys. 38(4), 421–428 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kosmann-Schwarzbach, Y.: Courant algebroids. A short history. SIGMA Symmetry Integr. Geom. Methods Appl. 9, Paper 014 (2013)

  23. Laurent-Gengoux, C., Stiénon, M., Xu, P.: Holomorphic Poisson manifolds and holomorphic Lie algebroids. Int. Math. Res. Not. IMRN. Art. ID rnn 088, p 46 (2008)

  24. Laurent-Gengoux, C., Stiénon, M., Xu, P.: Integration of holomorphic Lie algebroids. Math. Ann. 345(4), 895–923 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Laurent-Gengoux, C., Stiénon, M., Xu, P.: Lectures on Poisson groupoids. In: Lectures on Poisson Geometry. Geometry and Topology Monographs, vol. 17. Geom. Topol. Publ., Coventry, pp. 473–502 (2011)

  26. Mackenzie, K.C.H.: Double Lie algebroids and second-order geometry. I. Adv. Math. 94(2), 180–239 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mackenzie, K.C.H.: General Theory of Lie Groupoids and Lie Algebroids. London Mathematical Society Lecture Note Series, vol. 213. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  28. Mackenzie, K.C.H., Xu, P.: Lie bialgebroids and Poisson groupoids. Duke Math. J. 73(2), 415–452 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mackenzie, K.C.H., Xu, P.: Integration of Lie bialgebroids. Topology 39(3), 445–467 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mehta, R.A.: \(Q\)-groupoids and their cohomology. Pac. J. Math. 242(2), 311–332 (2009)

    Article  MATH  Google Scholar 

  31. Ortiz, C.: Multiplicative Dirac structures. Pac. J. Math. 266(2), 329–365 (2013)

  32. Pradines, J.: Remarque sur le groupoïde cotangent de Weinstein-Dazord. C. R. Acad. Sci. Paris Sér. I Math. 306(13), 557–560 (1988)

  33. Stiénon, M., Xu, P.: Reduction of generalized complex structures. J. Geom. Phys. 58(1), 105–121 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Weinstein, A.: Symplectic groupoids and Poisson manifolds. Bull. Am. Math. Soc. (N.S.) 16(1), 101–104 (1987)

  35. Weinstein, A.: Coisotropic calculus and Poisson groupoids. J. Math. Soc. Jpn. 40(4), 705–727 (1988)

    Article  MATH  Google Scholar 

  36. Weinstein, A.: The Integration Problem for Complex Lie Algebroids. From Geometry to Quantum Mechanics. Progress in Mathematics, vol. 252, pp. 93–109. Birkhäuser Boston, Boston (2007)

  37. Xu, P.: On Poisson groupoids. Int. J. Math. 6(1), 101–124 (1995)

    Article  MATH  Google Scholar 

  38. Xu, P.: Gerstenhaber algebras and BV-algebras in Poisson geometry. Commun. Math. Phys. 200(3), 545–560 (1999)

    Article  MATH  Google Scholar 

  39. Yano, K., Ishihara, S.: Tangent and Cotangent Bundles: Differential Geometry. Pure and Applied Mathematics, vol. 16. Marcel Dekker Inc., New York (1973)

  40. Zakrzewski, S.: Quantum and classical pseudogroups. I. Union pseudogroups and their quantization. Commun. Math. Phys. 134(2), 347–370 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zakrzewski, S.: Quantum and classical pseudogroups. II. Differential and symplectic pseudogroups. Commun. Math. Phys. 134(2), 371–395 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Camille Laurent-Gengoux, Rajan Mehta, and Cristian Ortiz for useful discussions and an anonymous referee for suggesting many improvements. We would also like to thank several institutions for their hospitality while work on this project was underway: Penn State (Jotz Lean), and Institut des Hautes Études Scientifiques and Beijing International Center for Mathematical Research (Xu). Special thanks go to the Michéa family and our many friends in Glanon, whose warmth provided us constant inspiration for our work in the past. Our memories of our many friends from Glanon who have unfortunately left mathematics serve as a powerful reminder that our primary role as mathematicians is to elucidate mathematics while enjoying its beauty. We dedicate this paper to our dear old friends.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madeleine Jotz Lean.

Additional information

Research partially supported by a Dorothea-Schlözer fellowship of the University of Göttingen, Swiss NSF Grants 200021-121512 and PBELP2_137534, NSF Grants DMS-0801129 and DMS-1101827, NSA Grant H98230-12-1-0234.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lean, M.J., Stiénon, M. & Xu, P. Glanon groupoids. Math. Ann. 364, 485–518 (2016). https://doi.org/10.1007/s00208-015-1222-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1222-z

Navigation