Alper, J.D., Easton, R.W.: Recasting results in equivariant geometry: affine cosets, observable subgroups and existence of good quotients. Transform. Groups 17(1), 1–20 (2012)
MATH
MathSciNet
Article
Google Scholar
Artin, M.: Algebraization of formal moduli. II. Existence of modifications. Ann. Math. 2, 91 (1970)
MathSciNet
Google Scholar
Bäker, H.: Good quotients of Mori dream spaces. Proc. Am. Math. Soc. 139(9), 3135–3139 (2011)
MATH
Article
Google Scholar
Białynicki-Birula, A.: Quotients by actions of groups. In: Algebraic Quotients. Torus actions and cohomology. The adjoint representation and the adjoint action, Encyclopaedia of Mathematical Science, vol. 131, pp. 1–82. Springer, Berlin (2002)
Białynicki-Birula, A., Sommese, A.J.: Quotients by \(\mathbb{C}^{\ast }\) and \({\rm SL}(2, \mathbb{C}) \) actions. Trans. Am. Math. Soc. 279(2), 773–800 (1983)
MATH
Google Scholar
Białynicki-Birula, A., Sommese, A.J.: Quotients by \(\mathbb{C}^* \times \mathbb{C}^*\) actions. Trans. Am. Math. Soc. 289(2), 519–543 (1985)
Białynicki-Birula, A., Świecicka, J.: On complete orbit spaces of \({\rm SL}(2)\) actions. II. Colloq. Math. 63(1), 9–20 (1992)
MATH
MathSciNet
Google Scholar
Białynicki-Birula, A., Świecicka, J.: Open subsets of projective spaces with a good quotient by an action of a reductive group. Transform. Groups 1(3), 153–185 (1996)
MATH
MathSciNet
Article
Google Scholar
Białynicki-Birula, A., Świecicka, J.: Three theorems on existence of good quotients. Math. Ann. 307(1), 143–149 (1997)
MATH
MathSciNet
Article
Google Scholar
Białynicki-Birula, A., Świecicka, J.: A recipe for finding open subsets of vector spaces with a good quotient. Colloq. Math. 77(1), 97–114 (1998)
MATH
MathSciNet
Google Scholar
Cox, D.A.: The homogeneous coordinate ring of a toric variety. J. Algebraic Geom. 4(1), 17–50 (1995)
MATH
MathSciNet
Google Scholar
Cox, D.A., Little, J.B., Schenck, H.K.: Toric varieties. Graduate studies in mathematics, vol. 124. American Mathematical Society, Providence (2011)
MATH
Google Scholar
Grauert, H.: Bemerkenswerte pseudokonvexe Mannigfaltigkeiten. Math. Z. 81, 377–391 (1963)
MATH
MathSciNet
Article
Google Scholar
Grauert, H., Remmert, R.: Theory of Stein Spaces. Classics in Mathematic. Springer, Berlin (2004)
Book
Google Scholar
Greb, D.: Compact Kähler quotients of algebraic varieties and Geometric Invariant Theory. Adv. Math. 224(2), 401–431 (2010)
MATH
MathSciNet
Article
Google Scholar
Greb, D.: Projectivity of analytic Hilbert and Kähler quotients. Trans. Am. Math. Soc. 362, 3243–3271 (2010)
MATH
MathSciNet
Article
Google Scholar
Greb, D.: Rational singularities and quotients by holomorphic group actions. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) X(2), 413–426 (2011)
MathSciNet
Google Scholar
Greb, D., Heinzner, P.: Kählerian reduction in steps. In: Campbell, E., Helminck, A.G., Kraft, H., Wehlau, D. (eds.) Symmetry and Spaces—Proceedings of a workshop in honour of Gerry Schwarz, Progress in Mathematics, vol. 278, pp. 63–82. Birkhäuser, Boston (2010)
Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II. Inst. Hautes Études Sci. Publ. Math. 24 (1965)
Hacon, C.D., Kovács, S.J.: Classification of higher dimensional algebraic varieties. Oberwolfach seminars, vol. 41. Birkhäuser, Basel (2010)
MATH
Book
Google Scholar
Hartshorne, R.: Ample subvarieties of algebraic varieties. Lecture Notes in Mathematics, vol. 156. Springer, Berlin (1970)
Hartshorne, R.: Algebraic Geometry. Graduate texts in mathematics, vol. 52. Springer, New York (1977)
MATH
Google Scholar
Hausen, J.: Complete orbit spaces of affine torus actions. Int. J. Math. 20(1), 123–137 (2009)
MATH
MathSciNet
Article
Google Scholar
Hausen, J.: Three Lectures on Cox Rings. In: Torsors, Étale Homotopy and Applications to Rational Points. LMS Lecture Note Series, vol. 405, pp. 3–60. Cambridge University Press (2013)
Heinzner, P.: Fixpunktmengen kompakter Gruppen in Teilgebieten Steinscher Mannigfaltigkeiten. J. Reine Angew. Math. 402, 128–137 (1989)
MATH
MathSciNet
Google Scholar
Heinzner, P.: Geometric invariant theory on Stein spaces. Math. Ann. 289(4), 631–662 (1991)
MATH
MathSciNet
Article
Google Scholar
Heinzner, P., Loose, F.: Reduction of complex Hamiltonian \(G\)-spaces. Geom. Funct. Anal. 4(3), 288–297 (1994)
Heinzner, P., Huckleberry, A.T., Loose, F.: Kählerian extensions of the symplectic reduction. J. Reine Angew. Math. 455, 123–140 (1994)
MATH
MathSciNet
Google Scholar
Heinzner, P., Migliorini, L., Polito, M.: Semistable quotients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26(2), 233–248 (1998)
MATH
MathSciNet
Google Scholar
Hu, Y., Keel, S.: Mori dream spaces and GIT. Mich. Math. J. 48, 331–348 (2000)
MATH
MathSciNet
Article
Google Scholar
Ivashkovich, S.: Limiting behavior of trajectories of complex polynomial vector fields (2010). arXiv:1004.2618
King, A.D.: Moduli of representations of finite-dimensional algebras. Q. J. Math. Oxf. Ser. (2) 45(180), 515–530 (1994)
MATH
Article
Google Scholar
Knutson, D.: Algebraic Spaces. Lecture Notes in Mathematics, vol. 203. Springer, Berlin (1971)
Luna, D.: Slices étales. Bull. Soc. Math. France 33, 81–105 (1973)
Luna, D.: Fonctions différentiables invariantes sous l’opération d’un groupe réductif. Ann. Inst. Fourier (Grenoble) 26(1), ix, 33–49 (1976)
Lopez, A.F.: Noether-Lefschetz theory and the Picard group of projective surfaces. Mem. Am. Math. Soc. 89(438) (1991)
Matsushima, Y.: Espaces homogènes de Stein des groupes de Lie complexes. Nagoya Math. J. 16, 205–218 (1960)
MATH
MathSciNet
Google Scholar
Mumford, D.: The Red Book of Varieties and Schemes. Lecture Notes in Mathematics, vol. 1358. Springer, Berlin (1999)
Mumford, D., Fogarty, J., Kirwan, F.C.: Geometric Invariant Theory. In: Ergebnisse der Mathematik und ihrer Grenzgebiete, 2. Folge, vol. 34, 3rd edn. Springer, Berlin (1994)
Nemirovski, S.: The Levi problem and semistable quotients. Complex Var. Elliptic Equ. 58(11), 1517–1525 (2013)
MATH
MathSciNet
Article
Google Scholar
Onishchik, A.L., Vinberg, E.B.: Lie Groups and Algebraic Groups. Springer series in Soviet mathematics. Springer, Berlin (1990)
MATH
Book
Google Scholar
Popov, V., Vinberg, E.B.: Invariant Theory. Algebraic geometry IV. In: Encyclopaedia of Mathematical Sciences, vol. 55, pp. 123–284. Springer, Berlin (1994)
Rosenlicht, M.: Some basic theorems on algebraic groups. Am. J. Math. 78, 401–443 (1956)
MATH
MathSciNet
Article
Google Scholar
Serre, J.P.: Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier (Grenoble) 6, 1–42 (1955–1956)
Shafarevich, I.R.: Basic Algebraic Geometry, 2nd edn. Springer, Berlin (1994)
Book
Google Scholar
Snow, D.M.: Reductive group actions on Stein spaces. Math. Ann. 259(1), 79–97 (1982)
MATH
MathSciNet
Article
Google Scholar
Sumihiro, H.: Equivariant completion. J. Math. Kyoto Univ. 14, 1–28 (1974)
MATH
MathSciNet
Google Scholar