Abstract
We obtain a compactness result for Fano manifolds and Kähler Ricci flows. Comparing to the more general Riemannian versions in Anderson (Invent Math 102(2):429–445, 1990) and Hamilton (Am J Math 117:545–572, 1995), in this Fano case, the curvature assumption is much weaker and is preserved by the Kähler Ricci flows. One assumption is the \(C^1\) boundedness of the Ricci potential and the other is the smallness of Perelman’s entropy. As one application, we obtain a new local regularity criteria and structure result for Kähler Ricci flows. The proof is based on a Hölder estimate for the gradient of harmonic functions and mixed derivative of Green’s function.
Similar content being viewed by others
References
Anderson, M.T.: Convergence and rigidity of manifolds under Ricci curvature bounds. Invent. Math. 102(2), 429–445 (1990)
Bakry, D., Concordet, D., Ledoux, M.: Optimal heat kernel bounds under logarithmic Sobolev inequalities. ESAIM Probab. Stat. 1, 391–407 (1995/97)
Cao, H.D.: Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math. 81, 359–372 (1985)
Cheeger, J.: Finiteness theorems for Riemannian manifolds. Am. J. Math. 92, 61–74 (1970)
Cao, H.D., Chen, B.L., Zhu, X.P.: Ricci flow on compact Kähler manifold of positive bisectional curvatute. Math. DG/0302087. C.R.A.S. 337(12), 781–784 (2003)
Citti, G., Garofalo, N., Lanconelli, E.: Harnack’s inequality for sum of squares of vector fields plus a potential. Am. J. Math. 115(3), 699–734 (1993)
Chen, X., Li, H., Wang, B.: Kähler–Ricci flow with small initial energy. Geom. Funct. Anal. 18(5), 1525–1563 (2009)
Chow, B., Chu, S.C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci flow: techniques and applications. Part II. Analytic aspects. Mathematical Surveys and Monographs, vol. 144. American Mathematical Society, Providence (2008)
Chen, X., Tian, G.: Ricci flows on Kähler Einstein surfaces. Invent. Math. 147, 487–544 (2002)
Chen, X., Tian, G.: Ricci flows on Kähler Einstein manifolds. Duke Math. J. 131(1), 17–73 (2006)
Chen, X., Wang, B.: Space of Ricci flows (I). Commun. Pure Appl. Math. 65(10), 1399–1457 (2012). arXiv:0902.1545
Chen, X., Wang, B.: On the conditions to extend Ricci flow(III). Int. Math. Res. Not. IMRN 10, 2349–2367 (2013). arXiv:1107.5110
Gromov, M.: Structures métriques pour les variétés riemanniennes. (French) [Metric structures for Riemann manifolds]. In: Lafontaine, J., Pansu, P. (eds.) Textes Mathematiques [Mathematical Texts], vol. 1. CEDIC, Paris (1981)
Hamilton, R.: A compactness property for solution of the Ricci flow. Am. J. Math. 117, 545–572 (1995)
Hein, H.J., Naber, A.: New logarithmic Sobolev inequalities and an \(\epsilon \)-regularity theorem for the Ricci flow. arXiv:1205.0380
Keith, S., Zhong, X.: The Poincaré inequality is an open ended condition. Ann. Math. (2) 167(2), 575–599 (2008)
Lieberman, G.M.: Second Order Parabolic Differential Equations. World Scientific Publishing Co., Inc, River Edge (1996). xii+439 pp.
Li, P., Yau, S.T.: On the Parabolic Kernel of the Schödinger operator. Acta math. 156, 153–201 (1986)
Munteanu, O., Székelyhidi, G.: On convergence of the Kähler–Ricci flow. Commun. Anal. Geom. 19(5), 887–903 (2011)
Nicolaescu, L.I.: Lectures on the Geometry of Manifolds, 2nd edn. World Scientific Publishing Co., Pte. Ltd., Hackensack (2007)
Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159
Phong, D.H., Sturm, J.: On stability and the convergence of the Kähler–Ricci flow. J. Differ. Geom. 72(1), 149–168 (2006)
Phong, D.H., Song, J., Sturm, J., Weinkove, B.: The Kähler–Ricci flow with positive bisectional curvature. Invent. Math. 173(3), 651–665 (2008)
Phong, D.H., Song, J., Sturm, J., Weinkove, B.: The Kähler–Ricci flow and the \(\overline{\partial }\) operator on vector fields. J. Differ. Geom. 81(3), 631–647 (2009)
Sesum, N.: Convergence of a Kähler–Ricci flow. Math. Res. Lett. 12(5–6), 623–632 (2005)
Simader, C.G.: An elementary proof of Harnack’s inequality for Schrödinger operators and related topics. Math. Z. 203(1), 129–152 (1990)
Székelyhidi, G.: The Kähler–Ricci flow and K-polystability (English summary). Am. J. Math. 132(4), 1077–1090 (2010)
Sesum, N., Tian, G.: Bounding scalar curvature and diameter along the Kähler Ricci flow (after Perelman). J. Inst. Math. Jussieu 7(3), 575–587 (2008)
Song, J., Tian, G.: The Kähler–Ricci flow on surfaces of positive Kodaira dimension. Invent. Math. 170(3), 609–653 (2007)
Sun, S., Wang, Y.: On the Kähler-Ricci flow near a Kähler–Einstein metric. arXiv:1004.2018
Tosatti, V.: Kähler–Ricci flow on stable Fano manifolds. J. Reine Angew. Math. 640, 67–84 (2010)
Tian, G., Wang, B.: On the structure of almost Einstein manifolds. arXiv:1202.2912
Tian, G., Zhang, Q.S.: Isoperimetric inequality under Kähler Ricci flow. Am. J. Math. 136(5), 1155–1173 (2014)
Tian, G., Zhang, Z.L.: Regularity of Kähler Ricci flow on Fano manifolds (2013)
Tian, G., Zhang, Z.: Degeneration of Kähler–Ricci solitons. Int. Math. Res. Not. IMRN 5, 957–985 (2012)
Tian, G., Zhu, X.: Convergence of Kähler–Ricci flow. J. Am. Math. Soc. 20(3), 675–699 (2007)
Tian, G., Zhu, X.: Convergence of the Kähler–Ricci flow on Fano manifolds. J. Reine Angew. Math. 678, 223–245 (2013)
Tian, G., Zhang, S., Zhang, Z., Zhu, X.: Perelman’s entropy and Kähler–Ricci flow on a Fano manifold. Trans. Am. Math. Soc. 365(12), 6669–6695 (2013)
Ye, R.: The logarithmic Sobolev inequality along the Ricci flow. arXiv:0707.2424
Zhang, Q.S.: A uniform Sobolev inequality under Ricci flow, IMRN (2007). ibidi Erratum, Addendum
Zhang, Q.S.: Sobolev Inequalities, Heat Kernels Under Ricci Flow and the Poincaré Conjecture. CRC Press, Boca Raton (2011)
Zhang, Q.S.: Bounds on volume growth of geodesic balls under Ricci flow. Math. Res. Lett. 19(1), 245–253 (2012). arXiv:1107.4262
Zhang, Z.: Kähler Ricci flow on Fano manifolds with vanished Futaki invariants. arXiv:1010.5959
Zhang, Z.: Kähler Ricci flow with vanished Futaki invariant. arXiv:1011.4799
Zhu, X.: Stability of Kähler–Ricci flow on a Fano manifold. Math. Ann. 356(4), 1425–1454 (2013)
Acknowledgments
Q. S. Z. would like to thank Professors X. X. Chen, G. F. Wei and Zhenlei Zhang for helpful conversations. We are also grateful to the referee for helpful comments.
After the paper have been accepted for publication, Professor Xiaohua Zhu kindly informed us that the Proof of Theorems 1.2 and 1.3 can be shortened by proving \(C^{1, \alpha }\) continuity of harmonic functions and the Ricci potential within a harmonic coordinate by standard Schauder method. Thus the two theorems can also be strengthened to allow any \(\alpha \in (0, 1)\) instead of some \(\alpha \in (0, 1)\). However the integral estimate in Sect. 2 may be of independent interest.
G. T. acknowledges the support of a NSF grant. Part of the paper was written when Q. S. Z. was a visiting professor of Nanjing University under a Siyuan Foundation grant. He is grateful to both the Siyuan Foundation and the Simons Foundation for their support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tian, G., Zhang, Q.S. A compactness result for Fano manifolds and Kähler Ricci flows. Math. Ann. 362, 965–999 (2015). https://doi.org/10.1007/s00208-014-1147-y
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00208-014-1147-y