Skip to main content

Exponential estimate for the asymptotics of Bergman kernels

Abstract

We prove an exponential estimate for the asymptotics of Bergman kernels of a positive line bundle under hypotheses of bounded geometry. Further, we give Bergman kernel proofs of complex geometry results, such as separation of points, existence of local coordinates and holomorphic convexity by sections of positive line bundles.

This is a preview of subscription content, access via your institution.

References

  1. Berman, R.: Determinantal point processes and fermions on complex manifolds: Bulk universality. arXiv:0811.3341

  2. Bismut, J.-M.: A local index theorem for non-Kähler manifolds. Math. Ann. 284(4), 681–699 (1989)

    MathSciNet  Article  Google Scholar 

  3. Bismut, J.-M.: Equivariant immersions and Quillen metrics. J. Differ. Geom. 41(1), 53–157 (1995)

    MathSciNet  Google Scholar 

  4. Cheng, S.-Y., Yau, S.-T.: On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman’s equation. Commun. Pure Appl. Math. 33, 507–544 (1980)

    MathSciNet  Article  Google Scholar 

  5. Christ, M.: On the \(\overline{\partial }\) equation in weighted \(L^2\)-norms in \(\mathbb{C} ^1\). J. Geom. Anal. 3, 193–230 (1991)

    MathSciNet  Article  Google Scholar 

  6. Christ, M.: Upper bounds for Bergman kernels associated to positive line bundles with smooth Hermitian metrics. arXiv:1308.0062

  7. Dai, X., Liu, K., Ma, X.: On the asymptotic expansion of Bergman kernel. J. Differ. Geom. 72, 1–41 (2006)

    MathSciNet  Google Scholar 

  8. Delin, H.: Pointwise estimates for the weighted Bergman projection kernel in \({\mathbb{C}}^n\), using a weighted \(L^2\) estimate for the \(\overline{\partial }\)-equation. Ann. Inst. Fourier (Grenoble) 48, 967–997 (1998)

    MathSciNet  Article  Google Scholar 

  9. Demailly, J.P.: Estimations \(L^2\) pour l’opérateur \(\overline{\partial }\) d’un fibré holomorphe semipositif au-dessus d’une variété kählérienne complète. Ann. Sci. École Norm. Supér. 15, 457–511 (1982)

    MathSciNet  Google Scholar 

  10. Hörmander, L.: An introduction to complex analysis in several variables. North-Holland Mathematical Library, vol. 7, 3rd edn. North-Holland Publishing Co., Amsterdam (1990)

  11. Hsiao, C.-Y., Marinescu, G.: The asymptotics for Bergman kernels for lower energy forms and the multiplier ideal Bergman kernel asymptotics. Commun. Anal. Geom. 22, 1–108 (2014)

    MathSciNet  Article  Google Scholar 

  12. Lindholm, N.: Sampling in weighted \(L^p\) spaces of entire functions in \(\mathbb{C}^n\) and estimates of the Bergman kernel. J. Funct. Anal. 182, 390–426 (2001)

    MathSciNet  Article  Google Scholar 

  13. Lu, Z., Zelditch, S.: Szegö kernels and Poincaré series. arXiv:1309.7088

  14. Kollár, J.: Shafarevich Maps and Automorphic Forms. Princeton University Press, Princeton (1995)

    Book  Google Scholar 

  15. Ma, X.: Geometric quantization on Kähler and symplectic manifolds. In: International Congress of Mathematicians, vol. II, pp. 785–810. Hyderabad, India, 19–27 Aug 2010

  16. Ma, X., Marinescu, G.: The spin\(^c\) Dirac operator on high tensor powers of a line bundle. Math. Z 240(3), 651–664 (2002)

    MathSciNet  Article  Google Scholar 

  17. Ma, X., Marinescu, G.: Holomorphic Morse Inequalities and Bergman Kernels. Progress in Mathematics, vol. 254. Birkhäuser Boston Inc, Boston (2007)

    Google Scholar 

  18. Ma, X., Marinescu, G.: Generalized Bergman kernels on symplectic manifolds. Adv. Math. 217, 1756–1815 (2008)

    MathSciNet  Article  Google Scholar 

  19. Ma, X., Marinescu, G.: Berezin-Toeplitz quantization and its kernel expansion. Travaux Mathématiques 19, 125–166 (2011)

    MathSciNet  Google Scholar 

  20. Milnor, J.: A note on curvature and fundamental group. J. Differ. Geom. 2, 1–7 (1968)

    MathSciNet  Google Scholar 

  21. Napier, T.: Convexity properties of coverings of smooth projective varieties. Math. Ann. 286, 433–479 (1990)

    MathSciNet  Article  Google Scholar 

  22. Napier, T., Ramachandran, M.: The \(L^2\)-method, weak Lefschetz theorems and the topology of Kähler manifolds. J. Am. Math. Soc. 11, 375–396 (1998)

    MathSciNet  Article  Google Scholar 

  23. Todor, R., Marinescu, G., Chiose, I.: Morse inequalities on covering manifolds. Nagoya Math. J. 163, 145–165 (2001)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Marinescu.

Additional information

X. Ma: Partially supported by Institut Universitaire de France and funded through the Institutional Strategy of the University of Cologne within the German Excellence Initiative.

G. Marinescu: Partially supported by DFG funded projects SFB/TR 12, MA 2469/2-1 and ENS Paris.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Marinescu, G. Exponential estimate for the asymptotics of Bergman kernels. Math. Ann. 362, 1327–1347 (2015). https://doi.org/10.1007/s00208-014-1137-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1137-0