Skip to main content
Log in

The \(F\)-pure threshold of a Calabi–Yau hypersurface

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We compute the \(F\)-pure threshold of the affine cone over a Calabi–Yau hypersurface, and relate it to the order of vanishing of the Hasse invariant on the versal deformation space of the hypersurface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhatt, B., Hernández, D.J., Miller, L.E., Mustaţă, M.: Log canonical thresholds, \(F\)-pure thresholds, and nonstandard extensions. Algebra Number Theory 6, 1459–1482 (2012)

  2. Blickle, M., Mustaţă, M., Smith, K.E.: Discreteness and rationality of \(F\)-thresholds. Mich. Math. J. 57, 43–61 (2008)

    Article  MATH  Google Scholar 

  3. Blickle, M., Mustaţă, M., Smith, K.E.: \(F\)-thresholds of hypersurfaces. Trans. Am. Math. Soc. 361, 6549–6565 (2009)

    Article  MATH  Google Scholar 

  4. Blickle, M., Schwede, K., Takagi, S., Zhang, W.: Discreteness and rationality of \(F\)-jumping numbers on singular varieties. Math. Ann. 347, 917–949 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bloch, S., Kato, K.: \(p\)-adic étale cohomology. Inst. Hautes Études Sci. Publ. Math. 63, 107–152 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. Deligne, P., Illusie, L.: Relèvements modulo \(p^2\) et décomposition du complexe de de Rham. Invent. Math. 89, 247–270 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. van der Geer, G., Katsura, T.: An invariant for varieties in positive characteristic. Contemp. Math. 300, 131–141 (2002)

    Article  Google Scholar 

  8. Hara, N.: F-pure thresholds and F-jumping exponents in dimension two, with an appendix by P. Monsky. Math. Res. Lett. 13, 747–760 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hara, N., Yoshida, K.-I.: A generalization of tight closure and multiplier ideals. Trans. Am. Math. Soc. 355, 3143–3174 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hernández, D.J.: \(F\)-pure thresholds of binomial hypersurfaces. Proc. Am. Math. Soc. 142, 2227–2242 (2014)

    Article  MATH  Google Scholar 

  11. Hernández, D.J.: \(F\)-invariants of diagonal hypersurfaces. Proc. Am. Math. Soc. 143, 87–104 (2015)

  12. Huneke, C., Mustaţă, M., Takagi, S., Watanabe, K.-I.: F-thresholds, tight closure, integral closure, and multiplicity bounds. Mich. Math. J. 57, 463–483 (2008)

    Article  MATH  Google Scholar 

  13. Igusa, J.-I.: Class number of a definite quaternion with prime discriminant. Proc. Natl. Acad. Sci. USA 44, 312–314 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  14. Illusie, L.: Ordinarité des intersections complètes générales. In: The Grothendieck Festschrift, vol. II, Progress in Mathematics, vol. 87, pp. 376–405. Birkhäuser, Boston (1990)

  15. Katzman, M., Lyubeznik, G., Zhang, W.: On the discreteness and rationality of \(F\)-jumping coefficients. J. Algebra 322, 3238–3247 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Miller, L.E., Singh, A.K., Varbaro, M.: The \(F\)-pure threshold of a determinantal ideal. Bull. Braz. Math. Soc. (N.S.) (to appear). arXiv:1210.6729 [math.AC]

  17. Mustaţă, M.: Bernstein–Sato polynomials in positive characteristic. J. Algebra 321, 128–151 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mustaţă, M., Srinivas, V.: Ordinary varieties and the comparison between multiplier ideals and test ideals. Nagoya Math. J. 204, 125–157 (2011)

    MATH  MathSciNet  Google Scholar 

  19. Mustaţă, M., Takagi, S., Watanabe, K.-I.: F-thresholds and Bernstein–Sato polynomials. European Congress of Mathematics, pp. 341–364. European Mathematical Society, Zürich (2005)

  20. Mustaţă, M., Yoshida, K.-I.: Test ideals vs. multiplier ideals. Nagoya Math. J. 193, 111–128 (2009)

    MATH  MathSciNet  Google Scholar 

  21. Ogus, A.: On the Hasse locus of a Calabi–Yau family. Math. Res. Lett. 8, 35–41 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Schwede, K., Tucker, K.: Test ideals of non-principal ideals: computations, jumping numbers, alterations and division theorems. J. Math. Pures Appl. (9) 102, 891–929 (2014)

  23. Takagi, S., Watanabe, K.-I.: On F-pure thresholds. J. Algebra 282, 278–297 (2004)

Download references

Acknowledgments

We thank Mircea Mustaţă for raising the question for elliptic curves at the AMS-MRC workshop on Commutative Algebra, Snowbird, 2010, the workshop participants, and the American Mathematical Society. We also thank Johan de Jong for a useful conversation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhargav Bhatt.

Additional information

B. Bhatt was supported by NSF Grants DMS 1160914 and DMS 1128155, and A. K. Singh by NSF Grant DMS 1162585. B. Bhatt and A. K. Singh were supported by NSF Grant 0932078000 while in residence at MSRI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, B., Singh, A.K. The \(F\)-pure threshold of a Calabi–Yau hypersurface. Math. Ann. 362, 551–567 (2015). https://doi.org/10.1007/s00208-014-1129-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1129-0

Mathematics Subject Classification

Navigation