Skip to main content
Log in

Embedding theorems for Bergman spaces via harmonic analysis

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \(A^p_\omega \) denote the Bergman space in the unit disc induced by a radial weight \(\omega \) with the doubling property \(\int _{r}^1\omega (s)\,ds\le C\int _{\frac{1+r}{2}}^1\omega (s)\,ds\). The positive Borel measures such that the differentiation operator of order \(n\in \mathbb {N}\cup \{0\}\) is bounded from \(A^p_\omega \) into \(L^q(\mu )\) are characterized in terms of geometric conditions when \(0<p,q<\infty \). En route to the proof a theory of tent spaces for weighted Bergman spaces is built.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amar, E., Bonami, A.: Mesures de Carleson d’ordre \(\alpha \) et solutions au bord de l’équation \(\overline{\partial }\). Bull. Soc. Math. France 107, 23–48 (1979)

    MATH  MathSciNet  Google Scholar 

  2. Benedek, A., Panzone, R.: The spaces \(L^p\), with mixed norm. Duke Math. J. 28, 301–324 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burkholder, D.L., Gundy, R.F., Silverstein, M.L.: A maximal function characterization of the class \(H^p\). Trans. Am. Math. 157, 137–153 (1971)

    MATH  MathSciNet  Google Scholar 

  4. Cohn, W.S., Verbitsky, I.E.: Factorization of tent spaces and Hankel operators. J. Funct. Anal. 175(2), 308–329 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Coifman, R.R., Meyer, Y., Stein, E.M.: Some new functions spaces and their applications to Harmonic analysis. J. Funct. Anal. 62(3), 304–335 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Constantin, O.: Carleson embeddings and some classes of operators on weighted Bergman spaces. J. Math. Anal. Appl. 365(2), 668–682 (2010)

  7. Fefferman, C., Stein, E.M.: \(H^{p}\) spaces of several variables. Acta Math. 129(3–4), 137–193 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jacob, B., Partington, J.R., Pott, S.: On Laplace-Carleson embedding theorems. J. Funct. Anal. 264(3), 783–814 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Luecking, D.H.: Forward and reverse inequalities for functions in Bergman spaces and their derivatives. Am. J. Math. 107, 85–111 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Luecking, D.H.: Embedding derivatives of Hardy spaces into Lebesgue spaces. Proc. Lond. Math. Soc. 63(3), 595–619 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Luecking, D.H.: Embedding theorems for spaces of analytic functions via Khinchine’s inequality. Michigan Math. J. 40(2), 333–358 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Pau, J., Peláez, J.A.: Embedding theorems and integration operators on Bergman spaces with rapidly decreasing weights. J. Funct. Anal. 259(10), 2727–2756 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pavlović, M.: On the Littlewood-Paley \(g\)-function and Calderon’s area theorem. Expo. Math. 1(31), 169–195 (2013)

    Article  Google Scholar 

  14. Peláez, J.A., Rättyä, J.: Weighted Bergman spaces induced by rapidly increasing weights. Mem. Am. Math. Soc. 227(1066) (2014)

  15. Rochberg, R.: Decomposition theorems for Bergman spaces and their applications. In: Power, S.C. (ed.) Operator and function theory, pp. 225–278. Reidel, Dordrecht, The Netherlands (1985)

    Chapter  Google Scholar 

  16. Sawyer, E.T.: A characterization of a two-weight norm inequality for maximal operators. Studia Math. 75(1), 1–11 (1982)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish the thank Brett Wick for pointing out the reference [16] with regard to maximal functions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ángel Peláez.

Additional information

This research was supported in part by the Ramón y Cajal program of MICINN (Spain); by Ministerio de Educación y Ciencia, Spain, projects MTM2011-25502 and MTM2011-26538; by La Junta de Andalucía, (FQM210) and (P09-FQM-4468); by Academy of Finland project no. 268009, by Väisälä Foundation of Finnish Academy of Science and Letters, and by Faculty of Science and Forestry of University of Eastern Finland project no. 930349.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peláez, J.Á., Rättyä, J. Embedding theorems for Bergman spaces via harmonic analysis. Math. Ann. 362, 205–239 (2015). https://doi.org/10.1007/s00208-014-1108-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1108-5

Navigation