Mathematische Annalen

, Volume 361, Issue 3–4, pp 1055–1072 | Cite as

Multiscale analysis of 1-rectifiable measures: necessary conditions



We repurpose tools from the theory of quantitative rectifiability to study the qualitative rectifiability of measures in \(\mathbb {R}^n\), \(n\ge 2\). To each locally finite Borel measure \(\mu \), we associate a function \(\widetilde{J}_2(\mu ,x)\) which uses a weighted sum to record how closely the mass of \(\mu \) is concentrated near a line in the triples of dyadic cubes containing \(x\). We show that \(\widetilde{J}_2(\mu ,\cdot )<\infty \ \mu \)-a.e. is a necessary condition for \(\mu \) to give full mass to a countable family of rectifiable curves. This confirms a conjecture of Peter Jones from 2000. A novelty of this result is that no assumption is made on the upper Hausdorff density of the measure. Thus we are able to analyze general 1-rectifiable measures, including measures which are singular with respect to 1-dimensional Hausdorff measure.

Mathematics Subject Classification



  1. 1.
    Besicovitch, A.S.: On the fundamental geometrical properties of linearly measurable plane sets of points. Math. Ann. 98(1), 422–464 (1928)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Besicovitch, A.S.: On the fundamental geometrical properties of linearly measurable plane sets of points (II). Math. Ann. 115(1), 296–329 (1938)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bishop, C.J., Jones, P.W.: Harmonic measure, \(L^2\) estimates and the Schwarzian derivative. J. Anal. Math. 62, 77–113 (1994)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    David, G., Semmes, S.: Singular integrals and rectifiable sets in \({\bf R}^n\): beyond Lipschitz graphs. Astérisque 193, 152 (1991)Google Scholar
  5. 5.
    David, G., Semmes, S.: Analysis of and on uniformly rectifiable sets. Mathematical Surveys and Monographs, vol. 38. American Mathematical Society, Providence (1993)CrossRefGoogle Scholar
  6. 6.
    David, G., Toro, T.: Reifenberg parameterizations for sets with holes. Mem. Am. Math. Soc. 215(1012), vi+102 (2012)Google Scholar
  7. 7.
    Federer, H.: Geometric measure theory Die Grundlehren der mathematischen Wissenschaften Band 153. Springer, New York (1969)Google Scholar
  8. 8.
    Garnett, J., Killip, R., Schul, R.: A doubling measure on \(\mathbb{R}^d\) can charge a rectifiable curve. Proc. Am. Math. Soc. 138(5), 1673–1679 (2010)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Hahlomaa, I.: Menger curvature and rectifiability in metric spaces. Adv. Math. 219(6), 1894–1915 (2008)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Jones, P.W.: Rectifiable sets and the traveling salesman problem. Invent. Math. 102(1), 1–15 (1990)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Léger, J.C.: Menger curvature and rectifiability. Ann. Math. (2) 149(3), 831–869 (1999)CrossRefMATHGoogle Scholar
  12. 12.
    Lerman, G.: Quantifying curvelike structures of measures by using \(L_2\) Jones quantities. Commun. Pure Appl. Math. 56(9), 1294–1365 (2003)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Marstrand, J.M.: The \((\varphi,\, s)\) regular subsets of \(n\)-space. Trans. Am. Math. Soc. 113, 369–392 (1964)MATHMathSciNetGoogle Scholar
  14. 14.
    Mattila, P.: Hausdorff \(m\) regular and rectifiable sets in \(n\)-space. Trans. Am. Math. Soc. 205, 263–274 (1975)MATHMathSciNetGoogle Scholar
  15. 15.
    Mattila, P.: Geometry of sets and measures in Euclidean spaces. Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995). Fractals and rectifiabilityGoogle Scholar
  16. 16.
    Moore, E.F.: Density ratios and \((\phi,1)\) rectifiability in \(n\)-space. Trans. Am. Math. Soc. 69, 324–334 (1950)MATHGoogle Scholar
  17. 17.
    Morse, A.P., Randolph, J.F.: The \(\phi \) rectifiable subsets of the plane. Trans. Am. Math. Soc. 55, 236–305 (1944)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Okikiolu, K.: Characterization of subsets of rectifiable curves in \({\bf R}^{n}\). J. Lond. Math. Soc. (2) 46(2), 336–348 (1992)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Pajot, H.: Sous-ensembles de courbes Ahlfors-régulières et nombres de Jones. Publ. Mat. 40(2), 497–526 (1996)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Pajot, H.: Conditions quantitatives de rectifiabilité. Bull. Soc. Math. France 125(1), 15–53 (1997)MATHMathSciNetGoogle Scholar
  21. 21.
    Pajot, H.: Analytic capacity, rectifiability, Menger curvature and the Cauchy integral. Lecture Notes in Mathematics, vol. 1799. Springer, Berlin (2002)CrossRefGoogle Scholar
  22. 22.
    Preiss, D.: Geometry of measures in \({\bf R}^n\): distribution, rectifiability, and densities. Ann. Math. (2) 125(3), 537–643 (1987)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Schul, R.: Ahlfors-regular curves in metric spaces. Ann. Acad. Sci. Fenn. Math. 32(2), 437–460 (2007)MATHMathSciNetGoogle Scholar
  24. 24.
    Schul, R.: Subsets of rectifiable curves in Hilbert space—the analyst’s TSP. J. Anal. Math. 103, 331–375 (2007)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970)Google Scholar
  26. 26.
    Tolsa, X.: Mass transport and uniform rectifiability. Geom. Funct. Anal. 22(2), 478–527 (2012)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ConnecticutStorrsUSA
  2. 2.Department of MathematicsStony Brook UniversityStony BrookUSA

Personalised recommendations